Solutions to the Allen Cahn Equation and Minimal Surfaces

Milan Journal of Mathematics - Tập 79 - Trang 39-65 - 2011
Manuel del Pino1, Juncheng Wei2
1Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807, CNRS), Universidad de Chile, Santiago, Chile
2Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong

Tóm tắt

We discuss and outline proofs of some recent results on application of singular perturbation techniques for solutions in entire space of the Allen-Cahn equation Δu + u − u 3 = 0. In particular, we consider a minimal surface Γ in $${\mathbb {R}^9}$$ which is the graph of a nonlinear entire function x 9 = F(x 1, . . . , x 8), found by Bombieri, De Giorgi and Giusti, the BDG surface. We sketch a construction of a solution to the Allen Cahn equation in $${\mathbb {R}^9}$$ which is monotone in the x9 direction whose zero level set lies close to a large dilation of Γ, recently obtained by M. Kowalczyk and the authors. This answers a long standing question by De Giorgi in large dimensions (1978), whether a bounded solution should have planar level sets. We sketch two more applications of the BDG surface to related questions, respectively in overdetermined problems and in eternal solutions to the flow by mean curvature for graphs.

Tài liệu tham khảo

Allen S.M., Cahn J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979) F.J. Almgren Jr. Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem., Ann. of Math. (2) 84 1966 277–292. Altschuler S., Wu L.-F.: Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differential Equations 2(1), 101111 (1994) Ambrosio L., Cabré X.: Entire solutions of semilinear elliptic equations in \({\mathbb {R}^3}\) and a conjecture of De Giorgi. Journal Amer. Math. Soc. 13, 725–739 (2000) Angenent S., Velázquez J.J.L.: Degenerate neckpinches in mean curvature flow. J. Reine Angew. Math. 482, 15–66 (1997) Berestycki H., Caffarelli L., Nirenberg L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 69–94 (1997) Berestycki H., Caffarelli L., Nirenberg L.: Monotonicity for elliptic equations in an unbounded Lipschitz domain. Comm. Pure Appl. Math. 50, 1089–1111 (1997) Bernstein S.: Sur les surfaces définies au moyen de leur curbature moyenne ou totale. Ann. Sci. Ec. Norm. Sup. 27, 233–256 (1910) Bombieri E., De Giorgi E., Giusti E.: Minimal cones and the Bernstein problem. Invent. Math. 7, 243–268 (1969) Cabré X., Terra J.: Saddle-shaped solutions of bistable diffusion equations in all of \({\mathbb {R}^{2m}}\) . J. Eur. Math. Soc. 11(4), 819–943 (2009) Clutterbuck J., Schnurer O., Schulze F.: Stability of translating solutions to mean curvature flow. Cal. Var. PDE 29, 281–293 (2007) C.J. Costa, Imersoes minimas en \({\mathbb {R}^3}\) de genero un e curvatura total finita. PhD thesis, IMPA, Rio de Janeiro, Brasil (1982). Dancer E.N.: Stable and finite Morse index solutions on R n or on bounded domains with small diffusion. Trans. Amer. Math. Soc. 357(3), 1225–1243 (2005) De Giorgi E.: Una estensione del teorema di Bernstein. Ann. Scuola Norm. Sup. Pisa 3(19), 79–85 (1965) E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), 131–188, Pitagora, Bologna (1979). M. del Pino, M. Kowalczyk, J. Wei, On De Giorgi’s Conjecture in Dimensions N ≥ 9, To appear in Ann. of Math, preprint arXiv.org 0806.3141. del Pino M., Kowalczyk M., Wei J.: A counterexample to a conjecture by De Giorgi in large dimensions. Comp. Rend. Mathematique 346(23-24), 1261–1266 (2008) P. Daskalopoulos, M. del Pino, M. Kowalczyk, J. Wei, Mean convex solutions to the graphic mean curvature flow In preparation. M. del Pino, M. Kowalczyk, J. Wei, Entire Solutions of the Allen-Cahn equation and Complete Embedded Minimal Surfaces of Finite Total Curvature in \({\mathbb {R}^3}\) . Preprint arXiv.org 0902.204 2009. M. del Pino, M. Musso, F. Pacard, Soloutions of the Allen-Cahn equation invariant under screw motion. Preprint 2011 http://www.math.polytechnique.fr/pacard/PR-2011-1.pdf. M. del Pino, F. Pacard, J. Wei, Overdetermined semilinear elliptic problems: the role of minimal and constant mean curvature surfaces. In preparation. A. Farina and E. Valdinoci, The state of art for a conjecture of De Giorgi and related questions. “Reaction-Diffusion Systems and Viscosity Solutions”, World Scientific, 2008. Farina A., Valdinoci E.: Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195(3), 1025–1058 (2010) Fleming W.H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo 2(11), 69–90 (1962) Ghoussoub N., Gui C.: On a conjecture of De Giorgi and some related problems. Math. Ann. 311, 481–491 (1998) Hoffman D., Meeks W.H. III: A complete embedded minimal surface in \({\mathbb {R}^3}\) with genus one and three ends. J. Diff. Geom. 21, 109–127 (1985) Jerison D., Monneau R.: Towards a counter-example to a conjecture of De Giorgi in high dimensions. Ann. Mat. Pura Appl. 183, 439–467 (2004) L. Modica, Convergence to minimal surfaces problem and global solutions of Δu = 2(u 3 – u)., Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 223–244, Pitagora, Bologna, (1979). Modica L., Mortola S.: Un esempio di Γ-convergenza. Boll. Unione Mat. Ital. Sez. B 14, 285–299 (1977) F. Morabito, Index and nullity of the Gauss map of the Costa-Hoffman-Meeks surfaces, preprint 2008. Nayatani S.: Morse index and Gauss maps of complete minimal surfaces in Euclidean 3–space. Comm. Math. Helv. 68(4), 511–537 (1993) F. Pacard, J. Wei Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, Preprint arXiv:1102.3446v1 (2011). Savin O.: Regularity of flat level sets in phase transitions. Ann. of Math. (2) 169(1), 41–78 (2009) Simon L.: Entire solutions of the minimal surface equation. J. Differential Geometry 30, 643–688 (1989) Simons J.: Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88, 62–105 (1968) X.-J.Wang, Convex solutions to the mean curvature flow., Preprint arXiv.org/0404326. To appear in Ann. of Math.