Solutions of a Schrödinger–Kirchhoff–Poisson system with concave–convex nonlinearities

M. Soluki1, S. H. Rasouli2, G. A. Afrouzi1
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
2Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Babol, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem. Contemp. Math. 10, 391–404 (2008)

Ambrosetti, A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

Bao, G.: Infinitly many small solutions for a sublinear Schrödinger–Poisson system with sign-changing potential. Comput. Math. Appl. 71, 2082–2088 (2016)

Batkam, C., Santos Junior, J.: Schrödinger–Kirchhoff–Poisson type systems. Commun. Pure Appl. Anal. 429–444 (2016)

Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

Chen, S., Liu, S.: Standing waves for 4-superlinear Schrödinger–Kirchhoff equations. J. Funct. Sp. 38, 6103–6129 (2021)

D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893–906 (2004)

He, X., Zou, W.: Infinitly many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)

He, X., Zou, W.: Ground states for nonlinear Kirchhoff equations with critical growth. Annali di Matematica 193, 473–500 (2014)

Jin, J., Wu, X.: Infinitly many radial solutions for Kirchhoff-type problems in $$\mathbb{R} ^{N}$$. J. Math. Anal. Appl. 412, 435–448 (2014)

Kirchhoff, G.: Mechanik. Tuebner, Leipzig (1883)

Li, Q., Wu, X.: A new result on high energy solutions for Schrödinger–Kirchhoff type equations in $$\mathbb{R} ^{N}$$. Appl. Math. Lett. 30, 24–27 (2013)

Liu, Z., Wang, Z.: Schrödinger equations with concave and convex nonlinearities. Z. Angew. Math. Phys. 56, 609–629 (2005)

Lu, D.: Positive solutions for Kirchhoff–Schrödinger–Poisson systems with general nonlinearity. Commun. Pure Appl. Anal. 2, 605–626 (2018)

Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

Shao, M., Mao, A.: Multiplicity of solutions to Schrödinger–Poisson system with concave-convex nonlinearities. Appl. Math. Lett. 83, 212–218 (2018)

Shao, M., Mao, A.: Schrödinger–Poisson system with concave-convex nonlinearities. J. Math. Phys. 60, 061504 (2019)

Sun, J., Liu, S.: Nontrivial solutions of Kirchhoff type problems. Appl. Math. Lett. 25, 500–504 (2012)

Vaira, G.: Ground states for Schröinger–Poisson type systems. Ricerche Mat. 2, 263–297 (2011)

Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24, 1st edn. Birkhäuser, Basel (1996)

Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff type equations in $$\mathbb{R} ^{N}$$. Nonlinear Anal. 12, 1278–1287 (2011)

Wu, Y., Liu, S.: Existence and multiplicity of solutions for asymptotically linear Schrödinger–Kirchhoff equations. Nonlinear Anal. 26, 191–198 (2015)

Xu, L., Chen, H.: Nontrivial solutions for Kirchhoff-type problems with a parameter. J. Math. Anal. Appl. 433, 455–472 (2016)

Xu, L., Chen, H.: Multiplicity of small negative-energy solutions for a class of nonlinear Schrödinger–Poisson systems. Appl. Math. Comput. 243, 817–824 (2014)