Solutions of a Schrödinger–Kirchhoff–Poisson system with concave–convex nonlinearities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)
Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem. Contemp. Math. 10, 391–404 (2008)
Bao, G.: Infinitly many small solutions for a sublinear Schrödinger–Poisson system with sign-changing potential. Comput. Math. Appl. 71, 2082–2088 (2016)
Batkam, C., Santos Junior, J.: Schrödinger–Kirchhoff–Poisson type systems. Commun. Pure Appl. Anal. 429–444 (2016)
Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
Chen, S., Liu, S.: Standing waves for 4-superlinear Schrödinger–Kirchhoff equations. J. Funct. Sp. 38, 6103–6129 (2021)
D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134, 893–906 (2004)
He, X., Zou, W.: Infinitly many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)
He, X., Zou, W.: Ground states for nonlinear Kirchhoff equations with critical growth. Annali di Matematica 193, 473–500 (2014)
Jin, J., Wu, X.: Infinitly many radial solutions for Kirchhoff-type problems in $$\mathbb{R} ^{N}$$. J. Math. Anal. Appl. 412, 435–448 (2014)
Kirchhoff, G.: Mechanik. Tuebner, Leipzig (1883)
Li, Q., Wu, X.: A new result on high energy solutions for Schrödinger–Kirchhoff type equations in $$\mathbb{R} ^{N}$$. Appl. Math. Lett. 30, 24–27 (2013)
Liu, Z., Wang, Z.: Schrödinger equations with concave and convex nonlinearities. Z. Angew. Math. Phys. 56, 609–629 (2005)
Lu, D.: Positive solutions for Kirchhoff–Schrödinger–Poisson systems with general nonlinearity. Commun. Pure Appl. Anal. 2, 605–626 (2018)
Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Shao, M., Mao, A.: Multiplicity of solutions to Schrödinger–Poisson system with concave-convex nonlinearities. Appl. Math. Lett. 83, 212–218 (2018)
Shao, M., Mao, A.: Schrödinger–Poisson system with concave-convex nonlinearities. J. Math. Phys. 60, 061504 (2019)
Sun, J., Liu, S.: Nontrivial solutions of Kirchhoff type problems. Appl. Math. Lett. 25, 500–504 (2012)
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24, 1st edn. Birkhäuser, Basel (1996)
Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff type equations in $$\mathbb{R} ^{N}$$. Nonlinear Anal. 12, 1278–1287 (2011)
Wu, Y., Liu, S.: Existence and multiplicity of solutions for asymptotically linear Schrödinger–Kirchhoff equations. Nonlinear Anal. 26, 191–198 (2015)
Xu, L., Chen, H.: Nontrivial solutions for Kirchhoff-type problems with a parameter. J. Math. Anal. Appl. 433, 455–472 (2016)
Xu, L., Chen, H.: Multiplicity of small negative-energy solutions for a class of nonlinear Schrödinger–Poisson systems. Appl. Math. Comput. 243, 817–824 (2014)