Solutions of Aronsson equation near isolated points
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aronsson G.: Minimization problems for the functional sup x F(x, f (x), f′ (x)). Arkiv för Mat. 6, 33–53 (1965)
Aronsson G.: Minimization problems for the functional sup x F(x, f (x), f′ (x)), part 2. Arkiv för Mat. 6, 409–431 (1966)
Aronsson G.: Extension of functions satisfying Lipschitz conditions. Arkiv för Mat. 6(28), 551–561 (1967)
Aronsson G.: Construction of singular solutions to the p-harmonic equation and its limit equation for p → ∞. Manuscripta Math. 56, 135–158 (1986)
Aronsson G., Crandall M., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41, 439–505 (2004)
Bhattacharya T.: On the behavior of ∞-harmonic functions near isolated points. Nonlinear Anal. 58, 333–349 (2004)
Crandall M., Evans L.C., Gariepy R.: Optimal Lipschitz extensions and the infinity laplacian. Calc. Var. Partial Differ. Equ. 13(2), 123–139 (2001)
Evans L.C., Savin O.: C 1, α Regularity for infinity harmonic functions in two dimensions. Calc. Var. Partial Differ. Equ. 32(3), 325–347 (2008)
Gariepy R., Wang C.Y., Yu Y.: Generalized cone comparison principle for viscosity solutions of the Aronsson equation and absolute minimizers. Commun. Partial Differ. Equ. 31(1–9), 1027–1046 (2006)
Jensen R.: Uniqueness of Lipschitz extension: Minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)
Juutinen P.: Quasiminima of the Lipschitz extension problem. Ann. Mat. Pura Appl. 186, 303–316 (2007)
Savin O.: C 1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 179(3), 351–361 (2005)
Savin, O., Wang, C.Y., Yu, Y.: Asymptotic behavior of infinity harmonic functions near an isolated singularity. Int. Math. Res. Not. 2008, article ID rnm163, 23 pp (2008)
Schneider R.: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cambridge (1993)