Solution of the Robin problem for the Laplace equation

Institute of Mathematics, Czech Academy of Sciences - Tập 43 Số 2 - Trang 133-155 - 1998
Dagmar Medková1
1Mathematical Institute of Czech Academy of Sciences, Praha 1, Czech Republic

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. F. Ahner: The exterior Robin problem for the Helmholtz equations. J. Math. Anal. Appl. 66 (1978), 37–54.

R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.

M. Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire. Paris, 1961.

Yu. D. Burago, V. G. Maz'ya: Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute. Leningrad, 1969. (In Russian.)

M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (In Slovak.)

H. Federer: Geometric Measure Theory. Springer-Verlag, 1969.

I. Gohberg, A. Markus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95. (In Russian.)

N. V. Grachev, V. G. Maz'ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60–64. (In Russian.)

N. V. Grachev, V. G. Maz'ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.

N. V. Grachev, V. G. Maz'ya: Invertibility of boundary integral operators of elasticity on.surfaces with conic points. Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.

N. V. Grachev, V. G. Maz'ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

H. Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975.

R. E. Kleinman, W. L. Wendland: On Neumann's method for the Helmholtz equation. J. Math. Anal. Appl. 57 (1977), 170–202.

J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.

J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547.

J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory. Aplikace matematiky 31 (1986), 239–308.

N. L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966.

J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1995.

V. G. Maz'ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental'nyje napravlenija, 27. Viniti, Moskva, 1988. (In Russian.)

D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslov. Math. J. 47 (1997), 651–679.

D. Medková: Solution of the Neumann problem for the Laplace equation. Czechoslov. Math. J. (in print).

I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211.

I. Netuka: Generalized Robin problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 312–324.

I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 462–489.

I. Netuka: The third boundary value problem in potential theory. Czechoslov. Math. J. 2(97) (1972), 554–580.

I. Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383.

I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslov. Math. J. 25 (1975), 309–316.

J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911.

A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1–4, 135–177.

A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115.

V. D. Sapožnikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries Problems Mat. Anal. Boundary Value. Problems Integr. Equations. Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (In Russian.)

M. Schechter: Principles of Funtional Analysis. Academic Press, London, 1971.

K. Yosida: Functional Analysis. Springer Verlag, 1965.

W. P. Ziemer: Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120. Springer-Verlag, 1989.