Solution of a nonlinear fractional-order initial value problem via a $\mathscr{C}^{*}$ -algebra-valued $\mathcal{R}$ -metric space

Gopinath Janardhanan1, Gunaseelan Mani1, Edwin Antony Raj Michael2, Sabri T. M. Thabet3, Imed Kedim4
1Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
2Department of Mathematics, K. Ramakrishnan College of Engineering (Autonomous), Trichy, India
3Department of Mathematics, Radfan University College, University of Lahej, Lahej, Yemen
4Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

Tóm tắt

In this article, we prove new common fixed-point theorems on a $\mathscr{C}^{*}$ -algebra-valued $\mathcal{R}$ -metric space. An example is given based on our obtained results. To enhance our results, a strong application based on the fractional-order initial value problem is provided.

Từ khóa


Tài liệu tham khảo

Ma, Z.H., Jiang, L.N., Sun, H.K.: \(C^{*}\)-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 206 (2014). https://doi.org/10.1186/1687-1812-2014-206

Chandok, S., Kumar, D., Park, C.: \(C^{*}\)-algebra-valued partial metric space and fixed point theorems. Proc. Indian Acad. Sci. Math. Sci. 129, 37 (2019). https://doi.org/10.1007/s12044-019-0481-0

Ghanifard, A., Masiha, H.P., De La Sen, M.: Approximation of fixed points of \(C^{*}\)-algebra-multivalued contractive mappings by the Mann and Ishikawa processes in convex \(C^{*}\)-algebra-valued metric spaces. Mathematics 8, 392 (2020). https://doi.org/10.3390/math8030392

Ma, Z.H., Jiang, L.N.: \(C^{*}\)-algebra-valued b-metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2015, 222 (2015). https://doi.org/10.1186/s13663-015-0471-6

Shen, C.C., Jiang, L.N., Ma, Z.H.: \(C^{*}\)-algebra-valued G-metric spaces and related fixed-point theorems. J. Funct. Spaces 2018, 3257189 (2018). https://doi.org/10.1155/2018/3257189

Huang, L.G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332, 1468–1476 (2007)

Tarafdar, E.: An approach to fixed-point theorems on uniform spaces. Trans. Am. Math. Soc. 191, 209–225 (1974)

Xin, Q.L., Jiang, L.N.: Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces. Fixed Point Theory Appl. 2015, 77 (2015)

Abu Osman, M.T.: Fuzzy metric space and fixed fuzzy set theorem. Bull. Malays. Math. Soc. 6, 1–4 (1983)

Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9, 43–53 (2004)

Guo, D.J., Lakshmikantham, V.: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11, 623–632 (1987). https://doi.org/10.1016/0362-546X(87)90077-0

Hussain, N., Ahmad, J.: New Suzuki-Berinde type fixed point results. Carpath. J. Math. 33, 59–72 (2017)

Hussain, S.: Fixed point and common fixed point theorems on ordered cone bmetric space over Banach algebra. J. Nonlinear Sci. Appl. 13, 22–33 (2020). https://doi.org/10.22436/jnsa.013.01.03

Khalehoghli, S., Rahimi, H., Gordji, M.E.: Fixed point theorems in R-metric spaces with applications. AIMS Math. 5, 3125–3137 (2020). https://doi.org/10.3934/math.2020201

Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012). https://doi.org/10.1186/1687-1812-2012-94

Astha, M., Deepak, K., Choonkil, P.: \(C^{*}\)-algebra valued R-metric space and fixed point theorems. AIMS Math. 7(4), 6550–6564 (2022). https://doi.org/10.3934/math.2022365

Afshari, H., Khoshvaghti, L.: The unique solution of some operator equations with an application for fractional differential equations. Bol. Soc. Parana. Mat. 40, 1–9 (2022)

Afshari, H., Abdo, M.S., Sahlan, M.N.: Some new existence results for boundary value problems involving ψ-Caputo fractional derivative. TWMS J. Appl. Eng. Math. 13(1), 246–255 (2023)

Deuri, B.C., Das, A.: Solvability of fractional integral equations via Darbo’s fixed point theorem. J. Pseudo-Differ. Oper. Appl. 13, 26 (2022). https://doi.org/10.1007/s11868-022-00458-7

Chandra Deuri, B., Paunoviá, M.V., Das, A., Parvaneh, V.: Solution of a fractional integral equation using the Darbo fixed point theorem. J. Math. 2022, 8415616 (2022). https://doi.org/10.1155/2022/8415616

Das, A., Mohiuddine, S., Alotaibi, A., Deuri, B.C.: Generalization of Darbotype theorem and application on existence of implicit fractional integral equations in tempered sequence spaces. Alex. Eng. J. 61(3), 2010–2015 (2022). https://doi.org/10.1016/j.aej.2021.07.031

Das, A., Suwan, I., Deuri, B.C., Abdeljawad, T.: On solution of generalized proportional fractional integral via a new fixed point theorem. Adv. Differ. Equ. 2021(1), 427 (2021). https://doi.org/10.1186/s13662-021-03589-1

Das, A., Deuri, B.C.: Solution of Hammerstein type integral equation with two variables via a new fixed point theorem. J. Anal. 31(3), 1839–1854 (2023). https://doi.org/10.1007/s41478-022-00537-4

Thabet, S.T.M., Vivas-Cortez, M., Kedim, I., Samei, M.E., Ayari, M.I.: Solvability of a ϱ-Hilfer fractional snap dynamic system on unbounded domains. Fractal Fract. 2023(7), 607 (2023)

Thabet, S.T.M., Vivas-Cortez, M., Kedim, I.: Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Math. 8(10), 23635–23654 (2023)

Qiaoling, X., Lining, J., Zhenhua, M.: Common fixed point theorems in \(C^{*}\)-algebra-valued metric spaces. J. Nonlinear Sci. Appl. 9, 4617–4627 (2016)

Britto, S., George, A.: Analysis of fractional order differential equation using Laplace transform. Commun. Math. Appl. 13, 103–115 (2022). https://doi.org/10.26713/cma.v13i1.1659