Solution for fractional generalized Zakharov equations with Mittag-Leffler function

Results in Engineering - Tập 5 - Trang 100085 - 2020
P. Veeresha1, D. G. Prakasha2
1Department of Mathematics, Karnatak University, Dharwad - 580003, India
2Department of Mathematics, Faculty of Science, Davangere University, Shivagangothri, Davangere - 577007, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liouville, 1832, Memoire surquelques questions de geometrieet de mecanique, et sur un nouveau genre de calcul pour resoudreces questions, J. Ecole. Polytech., 13, 1

Riemann, 1896

Caputo, 1969

Miller, 1993

Podlubny, 1999

Kilbas, 2006

Baleanu, 2010

Esen, 2018, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 167, 150, 10.1016/j.ijleo.2018.04.015

Veeresha, 2019, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13, 115, 10.1007/s40096-019-0284-6

Baleanu, 2017, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos, Solit. Fractals, 102, 99, 10.1016/j.chaos.2017.02.007

Veeresha, 2019, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29, 10.1063/1.5074099

Baskonus, 2019, On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93, 393, 10.1007/s12648-018-1262-9

Prakasha, 2019, Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 134, 1

Veeresha, 2019, An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 7, 1, 10.3390/math7030265

Abro, 2019, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function, Eur. Phys. J. Plus, 134

Veeresha, 2020, An efficient technique for nonlinear time-fractional Klein-Fock-Gordon equation, Appl. Math. Comput., 364

Abro, 2019, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium, J. Therm. Anal. Calorim., 135, 2197, 10.1007/s10973-018-7302-z

Abro, 2019, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique, J. Braz. Soc. Mech. Sci. Eng., 41

Veeresha, 2019, A reliable technique for fractional modified Boussinesq and approximate long wave equations, Adv. Differ. Equ., 253, 10.1186/s13662-019-2185-2

Siyal, 2019, Thermodynamics of magnetohydrodynamic Brinkman fluid in porous medium, J. Therm. Anal. Calorim., 136, 2295, 10.1007/s10973-018-7897-0

Abro, 2019, Functional application of Fourier sine transform in radiating gas flow with non-singular and non-local kernel, J. Braz. Soc. Mech. Sci. Eng., 41

Veeresha, 2019, A novel technique for (2+1)-dimensional time-fractional coupled Burgers equations, Math. Comput. Simulat., 116, 324, 10.1016/j.matcom.2019.06.005

Abro, 2019, Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit, Chaos, Solit. Fractals, 129, 40, 10.1016/j.chaos.2019.08.001

Taneco-Hernández, 2019, Fractional Kuramoto–Sivashinsky equation with power law and stretched Mittag-Leffler kernel, Phys. A, 527, 10.1016/j.physa.2019.121085

Dendy, 1990

Zakharov, 1972, Collapse of Langmuir waves, Zh. Eksp. Teor. Fiz., 62, 1745

Nicholson, 1983

Li, 1993, Langmuir turbulence equations with the self-generated magnetic field, Phys. Fluids B, 5

Malomed, 1997, Quiroga-Teixeiro Dynamics of solitary waves in the Zakharov model equations, Phys. Rev., 55

Wang, 2007, Exact and numerical solitary wave solutions of generalized Zakharov equation by the Adomian decomposition method, Chaos Solitons Fractals, 32, 1208, 10.1016/j.chaos.2005.11.071

Caputo, 2015, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1, 73

Atangana, 2016, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20, 763, 10.2298/TSCI160111018A

Liao, 1997, Homotopy analysis method and its applications in mathematics, J. Basic Sci. Eng., 5, 111

Liao, 1998, Homotopy analysis method: a new analytic method for nonlinear problems, Appl. Math. Mech., 19, 957, 10.1007/BF02457955

Singh, 2016, Numerical solution of time- and space-fractional coupled Burgers' equations via homotopy algorithm, Alexandria Eng. J., 55, 1753, 10.1016/j.aej.2016.03.028

Srivastava, 2017, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45, 192, 10.1016/j.apm.2016.12.008

Prakasha, 2019, Two novel computational techniques for fractional Gardner and Cahn-Hilliard equations, Comp. and Math. Methods, 1, 10.1002/cmm4.1021

Bulut, 2018, Analytic study for a fractional model of HIV infection of CD4+T lymphocyte cells, Math. Nat. Sci., 2, 33, 10.22436/mns.02.01.04

Veeresha, 2019, Solution for fractional Zakharov-Kuznetsov equations by using two reliable techniques, Chin. J. Phys., 60, 313, 10.1016/j.cjph.2019.05.009

Kumar, 2018, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 399, 405, 10.1016/j.cam.2017.03.011

Prakash, 2019, A reliable algorithm for time-fractional Navier-Stokes equations via Laplace transform, Nonlinear Eng., 8, 695, 10.1515/nleng-2018-0080

Veeresha, 2019, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13, 33, 10.1007/s40096-019-0276-6

Prakash, 2019, A homotopy technique for fractional order multi-dimensional telegraph equation via Laplace transform, Eur. Phys. J. Plus, 134, 1

Zedan, 2012, 1

Abbasbandy, 2009, Numerical solution of the generalized Zakharov equation by homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14, 4114, 10.1016/j.cnsns.2009.03.001

Wu, 2009, Variational approach to the generalized Zakharov equations, Int. J. Nonlinear Sci. Numer. Stimul., 10, 1245

Zedan, 2011, , Error! Not a valid embedded object.-expansion method for the generalized Zakharov equations, Ric. Mat., 60, 203, 10.1007/s11587-010-0105-6

Song, 2012, Traveling wave solutions for the generalized Zakharov equations, Math. Probl. Eng., 1

Zheng, 2017, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 37, 998, 10.1016/S0252-9602(17)30054-1

Lu, 2018, Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system, Adv. Differ. Equ., 266

Buhe, 2015, Symmetry reductions, exact solutions, and conservation laws of the generalized Zakharov equations, J. Math. Phys., 56, 1, 10.1063/1.4931962

Singh, 2018, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316, 504, 10.1016/j.amc.2017.08.048

Prakasha, 2019, Fractional approach for equation describing the water transport in unsaturated porous media with Mittag-Leffler kernel, Front. Physiol., 7

Atangana, 2015, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17, 4439, 10.3390/e17064439

Atangana, 2016, Analysis of non- homogenous heat model with new trend of derivative with fractional order, Chaos, Solit. Fractals, 89, 566, 10.1016/j.chaos.2016.03.027

Atangana, 2016, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20, 763, 10.2298/TSCI160111018A

Kumar, 2018, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 339, 405, 10.1016/j.cam.2017.03.011

Veeresha, 2019

Gómez-Aguilar, 2019, Chaos in a calcium oscillation model via Atangana-Baleanu operator with strong memory, Eur. Phys. J. Plus, 134