Solution blow-up for a new stationary Sobolev-type equation

Pleiades Publishing Ltd - Tập 50 - Trang 831-847 - 2010
M. O. Korpusov1, A. G. Sveshnikov1
1Faculty of Physics, Moscow State University, Moscow, Russia

Tóm tắt

A new nonlinear stationary Sobolev-type equation with a parameter η ∈ ℝ1 is derived. For η > 0, global solvability in the weak generalized sense is proved in the entire waveguide $$ \mathbb{S} $$ ⊗ ℝ + 1 . For η < 0, the strong generalized solution is shown to blow up in a certain waveguide cross section z = R 0 > 0. An upper bound for R 0 in terms of the original parameters of the problem is obtained.

Tài liệu tham khảo

V. K. Kalantarov and O. A. Ladyzhenskaya, “The Occurrence of Collapse for Quasilinear Equations of Parabolic and Hyperbolic Types,” Zap. Nauchn. Semin. LOMI 69, 77–102 (1977). M. O. Korpusov and A. G. Sveshnikov, “On the Blow-up of Oskolkov’s System of Equations,” Mat. Sb. 200(4), 83–108 (2009). L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960; Nauka, Moscow, 1992). J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972). E. Mitidieri and S. I. Pohozaev, “A priori Estimates and Blow-up of Solutions to Partial Differential Equations and Inequalities,” Tr. Mat. Inst. im. V.A. Steklova Ross. Akad. Nauk 234, 1–383 (2001) [Proc. Steklov Inst. Math. 234 (2001)]. A. G. Sveshnikov, A. B. Al’shin, M. O. Korpusov, and Yu. D. Pletner, Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian]. A. G. Sveshnikov, A. B. Al’shin, and M. O. Korpusov, Nonlinear Functional Analysis and Its Applications to Partial Differential Equations (Nauchnyi Mir, Moscow, 2008) [in Russian]. H. A. Levine, “Some Nonexistence and Instability Theorems for Solutions of Formally Parabolic Equations of the Form Pu t = −Au + F(u),” Arch. Ration. Mech. Anal. 51, 371–386 (1973).