Solution‐Processed Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene Antennas for Radio‐Frequency Communication

Advanced Materials - Tập 33 Số 1 - 2021
Meikang Han1, Yuqiao Liu2, Roman Rakhmanov1,2, Christopher Israel3, Md Abu Saleh Tajin2, Gary Friedman2, V. I. Volman4, Ahmad Hoorfar3, Kapil R. Dandekar2, Yury Gogotsi1
1A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
2Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA. 19104, USA
3Department of Electrical and Computer Engineering, Villanova University, Villanova PA 19085 USA
4Lockheed Martin Co. Moorestown NJ 08057 USA

Tóm tắt

AbstractHighly integrated, flexible, and ultrathin wireless communication components are in significant demand due to the explosive growth of portable and wearable electronic devices in the fifth‐generation (5G) network era, but only conventional metals meet the requirements for emerging radio‐frequency (RF) devices so far. Here, it is reported on Ti3C2Tx MXene microstrip transmission lines with low‐energy attenuation and patch antennas with high‐power radiation at frequencies from 5.6 to 16.4 GHz. The radiation efficiency of a 5.5 µm thick MXene patch antenna manufactured by spray‐coating from aqueous solution reaches 99% at 16.4 GHz, which is about the same as that of a standard 35 µm thick copper patch antenna at about 15% of its thickness and 7% of the copper weight. MXene outperforms all other materials evaluated for patch antennas to date. Moreover, it is demonstrated that an MXene patch antenna array with integrated feeding circuits on a conformal surface has comparable performance with that of a copper antenna array at 28 GHz, which is a target frequency in practical 5G applications. The versatility of MXene antennas in wide frequency ranges coupled with the flexibility, scalability, and ease of solution processing makes MXene promising for integrated RF components in various flexible electronic devices.

Từ khóa


Tài liệu tham khảo

10.1038/s41928-019-0363-6

10.1038/s41928-019-0355-6

10.1126/sciadv.aay1729

10.1038/s41586-019-0892-1

10.1038/s41928-019-0286-2

10.1038/s41586-019-1687-0

10.1002/adma.201904765

10.1109/TAP.2017.2742539

10.1109/TAP.2006.888401

10.1109/MAP.2017.2655582

Yu Y., 2019, IEEE Int. Symp. Antennas and Propagation and USNC‐URSI Radio Science Meeting

10.1039/C7LC00914C

10.1002/adma.201801368

10.1002/adma.201902767

10.1002/adma.201905279

Bharambe V., 2018, IEEE Int. Symp. on Antennas and Propagation and USNC/URSI National Radio Science Meeting

10.1021/acsami.9b07671

10.1016/j.scib.2018.03.014

10.1021/acsnano.9b06732

10.1063/1.5093327

10.1007/978-3-030-19026-2

10.1038/natrevmats.2016.98

10.1038/s41467-018-08169-8

10.1002/adma.201804779

10.1002/adma.201908486

10.1002/adma.202000716

10.1021/acsnano.0c01312

10.1126/sciadv.aau0920

10.1109/LMWC.2019.2956122

10.1109/TNANO.2006.877430

10.1109/TAP.2005.858865

Balanis C. A., 2016, Antenna Theory: Analysis and Design

10.1109/5.119568

10.1002/9780470772911

10.1038/s41928-019-0361-8

10.1038/s41928-019-0248-8

10.1002/adma.202001093

Mathis T., 2020, ChemRxiv

10.1016/j.apsusc.2020.147475

10.1021/acsnano.0c04411