Solution Combustion Synthesis of Complex Oxide Semiconductors

Muhammad Shazzad Hossain1, Egon Kecsenovity2, Árpád Varga2, Márk Molnár2, Csaba Janáky2, Krishnan Rajeshwar1
1Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, 76109-0065, USA
2MTA-SZTE, Lendület Photoelectrochemistry Research Group, Szeged, H-6720, Hungary

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kobayashi, Y., Yoshihiro, T., and Kageyama, H., Property engineering in perovskites via modification of anion chemistry, Annu. Rev. Mater. Sci., 2018, vol.48.

Kageyama, H., Hayashi, K., Maeda, K., Attfield, J.P., Hiroi, Z., Rondinelli, J., and Poeppelmeir, K.R., Expanding frontiers in materials chemistry and physics with multiple anions, Nature Commun., 2018, vol. 9, article number772.

McCarroll, W.H. and Ramanujachary, K.V., Encycolpaedia of Inorganic Chemistry, Ch. 3: Oxides: Solid State Chemistry, New York: Wiley, 2006.

Rajeshwar, K., Hossain, M.K., Macaluso, R.T., Janaky, C., Varga, A., and Kulesza, P.J., Copper oxidebased ternary and quaternary oxides: Where solid-state chemistry meets photoelectrochemistry (Review), J. Electrochem. Soc., 2018, vol. 165, pp. H3192–H3206.

Rajeshwar, K., Toward a renewable energy future, in Solar Hydrogen Generation, Rajeshwar, K., McConnell, R., and Licht, S., Eds., New York: Academic, 2008, pp. 167–228.

Rajeshwar, K., Solar energy conversion and environmental remediation using inorganic semiconductor–liquid interfaces: The road traveled and the way forward, J. Phys. Chem. Lett., 2011, vol. 2, pp. 1301–1309.

Rajeshwar, K., Photoelectrochemistry and the environment, J. Appl. Electrochem., 1995, vol. 25, pp. 1067–1082.

Bard, A.J. and Fox, M.A., Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res., 1995, vol. 28, pp. 141–145.

Wen, W. and Wu, J.M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, pp. 58090–58100.

Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50.

Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, pp. 14493–14586.

Li, F.T., Ran, J., Jaroniec, M., and Qiao, S.Z., Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion, Nanoscale, 2015, vol. 7, pp. 17590–17610.

Hegde, M.S., Madras, G., and Patil, K.C., Noble metal ionic catalysts, Acc. Chem. Res., 2009, vol. 42, pp. 704–712.

González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal., A, 2013, vol. 452, pp. 117–131.

Rajeshwar, K. and de Tacconi, N.R., Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Soc. Rev., 2009, vol. 38, no. 7, pp. 1984–1998.

Patil, K.C., Hegde, M.S., Yanu, R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.

Yu, X., Smith, J., Zhou, N., Zeng, L., Guo, P., Xia, Y., Alvarez, A., Aghion, S., Lin, H., Yu, J., Chang, R.P., Bedzyk, M.J., Ferragut, R., Marks, T.J., and Facchetti, A., Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 3217–3222.

Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2007, vol. 16, no. 1, pp. 23–35.

Akopdzhanyan, T.G. and Borovinskaya, I.P., AlON powders by SHS under nitrogen pressure with KClO4 as a booster, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 4. pp. 244–247.

Zhang, Z. and Wang, W., Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst, Mater. Lett., 2014, vol. 133, pp. 212–215.

Hossain, M.K., Samu, G.F., Gandha, K., Santhanagopalan, S., Liu, J.P., Janáky, C., and Rajeshwar, K., Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and its nanocomposites with CuO and a-Bi2O3, J. Phys. Chem. C, 2017, vol. 121, pp. 8252–6261.

Kumar, A., Rout, L., Achary, L.S.K., Mohanty, S.K. and Dash, P., A combustion synthesis route for magnetically separable graphene oxide–CuFe2O4–ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity, New J. Chem., 2017, vol. 41, pp. 10568–10583.

Chai, M.J., Chen, X.M., Zhao, Y., Liu, R.H., Zhao, J., and Li, F.T., Facile ionic liquid combustion synthesis and visible-light photocatalytic ability of mesoporous FeAl2O4 with high specific surface area, Chem. Lett., 2014, vol. 43, pp. 1743–1745.

Mu, H.Y., Li, F.T., An, X.T., Liu, R.H., Li, Y.L., Qian, X., and Hu, Y.Q., One-step synthesis, electronic structure, and photocatalytic activity of earth-abundant visiblelight-driven FeAl2O4, Phys. Chem. Chem. Phys., 2017, vol. 19, pp. 9392–9401.

Li, F.T., Zhao, Y., Liu, Y., Hao, Y.J., Liu, R.H., and Zhao, D.S., Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders, Chem. Eng. J., 2011, vol. 173, pp. 750–759.

Shetty, K., Prathibha, B.S., Rangappa, D., Anantharaju, K.S., Nagaswarupa, H.P., Nagabhushana, H., and Prashantha, S.C., Photocatalytic study for fabricated Ag doped and undoped MgFe2O4 nanoparticles, Mater. Today, 2017, vol. 4, no. 11, pp. 11764–11772.

Meena, S., Renuka, L., Anantharaju, K.S., Vidya, Y.S., Nagaswarupa, H.P., Prashantha, S.C., and Nagabhushana, H., Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis, Mater. Today, 2017, vol. 4, no. 11, pp. 11773–11781.

Zhang, D., Pu, X., Du, K., Yu, Y.M., Shim, J.J., Cai, P., Kim, S.I., and Seo, H.J., Combustion synthesis of magnetic Ag/NiFe2O4 composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2014, vol. 137, pp. 82–85.

Kelkar, S.A., Shaikh, P.A., Pachfule, P., and Ogale, S.B., Nanostructured Cd2SnO4 as an energy harvesting photoanode for solar water splitting, Energy Environ. Sci., 2012, vol. 5, no. 2, pp. 5681–5685.

Behera, A., Kandi, D., Majhi, S.M., Martha, S., and Parida, K., Facile synthesis of ZnFe2O4 photocatalysts for decolorization of organic dyes under solar irradiation, Beilstein J. Nanotechnol., 2018, vol. 9, pp. 436–446.

Li, L. and Wang, X., Self-propagating combustion synthesis and synergistic photocatalytic activity of GdFeO3 nanoparticles, J. Sol-Gel Sci. Technol., 2016, vol. 79, pp. 107–113.

Parida, K.M., Reddy, K.H., Martha, S., Das, D.P., and Biswal, N., Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 12161–12168.

Li, F.T., Liu, Y., Sun, Z.M., Liu, R.H., Kou, C.G., Zhao, Y. and Zhao, D.S., Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids, Mater. Lett., 2011, vol. 65, pp. 406–408.

Li, Y., Yao, S., Wen, W., Xue, L., and Yan, Y., Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3, J. Alloys Compd., 2010, vol. 491, pp. 560–564.

Xue, H., Li, Z., Wang, X., and Fu, X., Studies on nanocrystalline (Sr,Pb)TiO3 solid solutions prepared via a facile self-propagating combustion method, J. Phys. Chem. Solids, 2007, vol. 68, pp. 2326–2331.

Wu, L., Jimmy, C.Y., Zhang, L., Wang, X., and Li, S., Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide, J. Solid State Chem., 2004, vol. 177, no. 10, pp. 3666–3674.

Chen, Y., Yang, J., Wang, X., Feng, F., Zhang, Y., and Tang, Y., Synthesis YFeO3 by salt-assisted solution combustion method and its photocatalytic activity, J. Ceram. Soc. Jpn., 2014, vol. 122, pp. 146–150.

Saha, D., Madras, G., and Row, T.G., Solution combustion synthesis of γ(L)-Bi2MoO6 and photocatalytic activity under solar radiation, Mater. Res. Bull., 2011, vol. 46, pp. 1252–1256.

Zhang, Z., Wang, W., Shang, M., and Yin, W., Lowtemperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst, J. Hazard. Mater., 2010, vol. 177, pp. 1013–1018.

Timmaji, H.K., Chanmanee, W., de Tacconi, N.R., and Rajeshwar, K., Solution combustion synthesis of BiVO4 nanoparticles: Effect of combustion precursors on the photocatalytic activity, J. Adv. Oxid. Technol., 2011, vol. 14, pp. 93–105.

Jiang, H.Q., Endo, H., Natori, H., Nagai, M., and Kobayashi, K., Fabrication and photoactivities of spherical-shaped BiVO4 photocatalysts through solution combustion synthesis method, J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2955–2962.

Pérez, U.G., Sepúlveda-Guzmán, S., Martínez-de la Cruz, A., and Méndez, U.O., Photocatalytic activity of BiVO4 nanospheres obtained by solution combustion synthesis using sodium carboxymethylcellulose, J. Mol. Catal. A: Chem., 2011, vol. 335, pp. 169–175.

Nagabhushana, G.P., Nagaraju, G., and Chandrappa, G.T., Synthesis of bismuth vanadate: Its application in H2 evolution and sunlight-driven photodegradation, J. Mater. Chem. A, 2013, vol. 1, pp. 388–394.

Thomas, A., Janáky, C., Samu, G.F., Huda, M.N., Sarker, P., Liu, J. P., Van Nguyen, V., Wang, E.H., Schug, K.A., and Rajeshwar, K., Time-and energyefficient solution combustion synthesis of binary metal tungstate nanoparticles with enhanced photocatalytic activity, ChemSusChem, 2015, vol. 8, pp. 1652–1663.

Eranjaneya, H. and Chandrappa, G.T., Solution combustion synthesis of nano ZnWO4 photocatalyst, Trans. Indian Ceram. Soc., 2016, vol. 75, pp. 133–137.

Veldurthi, N.K., Eswar, N.K., Singh, S.A., and Madras, G., Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator, Appl. Catal., B, 2018, vol. 220, pp. 512–523.

Bellakki, M.B., Baidya, T., Shivakumara, C., Vasanthacharya, N.Y., Hegde, M.S., and Madras, G., Synthesis, characterization, redox and photocatalytic properties of Ce1-xPdxVO4 (0 = x = 0.1), Appl. Catal., B, 2008, vol. 84, pp. 474–481.

Saha, D., Madras, G., and Row, T.N.G., Synthesis and structure of Bi2Ce2O7: A new compound exhibiting high solar photocatalytic activity, Dalton Trans., 2012, vol. 41, pp. 9598–9600.

Samu, G.F., Veres, Á., Endrodi, B., Varga, E., Rajeshwar, K., and Janáky, C., Bandgap-engineered quaternary MxBi2-xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis, Appl. Catal., B, 2017, vol. 208, pp. 148–160.

Xue, H., Zhang, Y., Xu, J., Liu, X., Qian, Q., Xiao, L., and Chen, Q., Facile one-pot synthesis of porous Ln2Ti2O7 (Ln = Nd, Gd, Er) with photocatalytic degradation performance for methyl orange, Catal. Commun., 2014, vol. 51, pp. 72–76.

Sharma, V.M., Saha, D., Madras, G., and Row, T.G., Synthesis, structure, characterization and photocatalytic activity of Bi2Zr2O7 under solar radiation, RSC Adv., 2013, vol. 3, pp. 18938–18943.

Sahoo, P.P., Madras, G., and Guru Row, T.N., Synthesis, characterization, and photocatalytic properties of ZrMo2O8, J. Phys. Chem. C, 2009, vol. 113, pp. 10661–10666.

Kormányos, A., Thomas, A., Huda, M.N., Sarker, P., Liu, J.P., Poudyal, N., Janáky, C., and Rajeshwar, K., Solution combustion synthesis, characterization, and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles, J. Phys. Chem. C, 2016, vol. 120, pp. 16024–16034.

Sahoo, P.P., Sumithra, S., Madras, G., and Guru Row, T.N., Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7, Inorg. Chem., 2011, vol. 50, pp. 8774–8781.

de Tacconi, N.R., Timmaji, H.K., Chanmanee, W., Huda, M.N., Sarker, P., Janáky, C., and Rajeshwar, K., Photocatalytic generation of syngas using combustionsynthesized silver bismuth tungstate, Chem. Phys. Chem., 2012, vol. 13, pp. 2945–2955.

Vegard, L., Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Z. Phys., 1921, vol. 5, pp. 17–26.

Hao, Y.J., Li, F.T., Chen, F., Chai, M.J., Liu, R.H. and Wang, X.J., In situ one-step combustion synthesis of Bi2O3/Bi2WO6 heterojunctions with notable visible light photocatalytic activities, Mater. Lett., 2014, vol. 124, pp. 1–3.

Lv, D., Zhang, D., Pu, X., Kong, D., Lu, Z., Shao, X., Ma, H., and Dou, J., One-pot combustion synthesis of BiVO4/BiOCl composites with enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2017, vol. 174, pp. 97–103.

Jiang, H.Q., Endo, H., Natori, H., Nagai, M., and Kobayashi, K., Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation, Mater. Res. Bull., 2009, vol. 44, pp. 700–706.

Lu, D., Zhang, D., Liu, X., Liu, Z., Hu, L., Pu, X., Ma, H., Li, D., and Dou, J., Magnetic NiFe2O4/BiOBr composites: One-pot combustion synthesis and enhanced visible-light photocatalytic properties, Sep. Purif. Technol., 2016, vol. 158, pp. 302–307.

Jiang, H., Nagai, M., and Kobayashi, K., Enhanced photocatalytic activity for degradation of methylene blue over V2O5/BiVO4 composite, J. Alloys Compd., 2009, vol. 479, pp. 821–827.

Wei, Z.X., Wang, Y., Liu, J.P., Xiao, C.M., and Zeng, W.W., Synthesis, magnetization and photocatalytic activity of LaFeO3 and LaFe0.5Mn0.5-xO3-δ, Mater. Chem. Phys., 2012, vol. 136, pp. 755–761.

Dong, T., Li, Z., Ding, Z., Wu, L., Wang, X., and Fu, X., Characterizations and properties of Eu3+-doped ZnWO4 prepared via a facile self-propagating combustion method, Mater. Res. Bull., 2008, vol. 43, pp. 1694–1701.