Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes

Applied Geochemistry - Tập 25 Số 5 - Trang 674-683 - 2010
Doğan Paktunç1, K. Bruggeman1
1CANMET, Mining and Mineral Sciences Laboratories, 555 Booth St., Ottawa, Ontario, Canada K1A 0G1

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bluteau, 2007, The incongruent dissolution of scorodite – solubility, kinetics and mechanism, Hydrometallurgy, 87, 163, 10.1016/j.hydromet.2007.03.003

Carlson, 2002, Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues, Environ. Sci. Technol., 36, 1712, 10.1021/es0110271

Dove, 1985, The solubility and stability of scorodite, FeAsO4·2H2O, Am. Mineral., 70, 838

Dove, 1987, Solubility and stability of scorodite, FeAsO4·2H2O: reply, Am. Mineral., 72, 845

Dutrizac, 1988, The synthesis of crystalline scorodite, FeAsO4·2H2O, Hydrometallurgy, 19, 377, 10.1016/0304-386X(88)90042-4

Environment Canada, 1977. Metal Mining Liquid Effluent Regulations and Guidelines (EPS 1-WP-77-1).

Flemming, 2005, Identification of scorodite in fine-grained, high-sulfide, arsenopyrite mine-waste using micro X-ray diffraction (μXRD), Can. Mineral., 43, 1243, 10.2113/gscanmin.43.4.1243

Fujita, 2008, Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Part 1, Hydrometallurgy, 90, 92, 10.1016/j.hydromet.2007.09.012

Harvey, 2006, Scorodite dissolution kinetics: implications for arsenic release, Environ. Sci. Technol., 40, 6709, 10.1021/es061399f

Health Canada, 2006. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document – Arsenic. Water Quality and Health Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario.

Hochella, 2008, Nanominerals, mineral nanoparticles, and earth systems, Science, 319, 1631, 10.1126/science.1141134

Krause, 1985, Ferric arsenate compounds: are they environmentally safe? Solubilities of basic ferric arsenates

Krause, 1989, Solubilities and stabilities of ferric arsenate compounds, Hydrometallurgy, 22, 311, 10.1016/0304-386X(89)90028-5

Langmuir, 1999, Predicting arsenic concentrations in the porewaters of buried uranium mill tailings, Geochim. Cosmochim. Acta, 63, 3379, 10.1016/S0016-7037(99)00259-8

Langmuir, 2006, Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings, Geochim. Cosmochim. Acta, 70, 2942, 10.1016/j.gca.2006.03.006

Lengke, 2005, Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment, Geochim. Cosmochim. Acta, 69, 341, 10.1016/j.gca.2004.06.032

McCreadie, 1998, Geochemical behavior of autoclave-produced ferric arsenates and jarosite in a gold-mine tailings impoundment, 61

McKibben, 2008, Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions, Appl. Geochem., 23, 121, 10.1016/j.apgeochem.2007.10.009

Nicholson, R.V., 1994. Iron-sulfide oxidation mechanisms: laboratory studies. In: Jambor, J., Blowes, D. (Eds.), Environmental Geochemistry of Sulfide Mine-wastes. Mineralogical Association of Canada Short Course Handbook, vol. 22, pp. 163–183.

Nishimura, T., Robins, R.G., 1996. Crystalline phases in the system Fe(III)–As(V)–H2O at 25°C. In: Dutrizac, J.E., Harris, G.B. (Eds.), Proc. 2nd Int. Symp. Iron Control in Hydrometallurgy, Ottawa, Canada, October 20–23, 1996, pp. 521–533.

Nordstrom, 1987, Solubility and stability of scorodite, FeAsO4·2H2O: discussion, Am. Mineral., 72, 849

Paktunc, 2003, Speciation and characterization of arsenic in Ketza River Mine tailings using X-ray absorption spectroscopy, Environ. Sci. Technol., 37, 2067, 10.1021/es026185m

Paktunc, 2004, Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy, Geochim. Cosmochim. Acta, 68, 969, 10.1016/j.gca.2003.07.013

Paktunc, 2008, Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility, Geochim. Cosmochim. Acta, 72, 2649, 10.1016/j.gca.2008.03.012

Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2) – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Water-Resour. Invest. Rep., pp. 99–4259.

Riveros, 2001, Arsenic disposal practices in the metallurgical industry, Can. Metall. Q., 40, 395, 10.1179/cmq.2001.40.4.395

Robins, 1987, Solubility and stability of scorodite, FeAsO4·2H2O: discussion, Am. Mineral., 72, 842

Robins, 1988, Arsenic hydrometallurgy, 215

Robins, 1990, The stability and solubility of ferric arsenate: An update, 93

Swash, 1994, Hydrothermal precipitation from aqueous solutions containing iron(III), arsenate and sulphate, 177

Tozawa, K., Umetsu, Y., Nishimura, T., 1978. Hydrometallurgical recovery or removal of arsenic from copper smelter by-products. In: 107th AIME Meeting, Denver.

Walker, 2006, Kinetics of arsenopyrite oxidative dissolution by oxygen, Geochim. Cosmochim. Acta, 70, 1668, 10.1016/j.gca.2005.12.010

WHO, 2003

Williamson, 1994, The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation, Geochim. Cosmochim. Acta, 58, 5443, 10.1016/0016-7037(94)90241-0

World Bank, 2007. Environmental, Health, and Safety Guidelines – Base Metal Smelting and Refining. International Finance Corporation.