Soliton solutions and conservation laws for lossy nonlinear transmission line equation

Superlattices and Microstructures - Tập 107 - Trang 320-336 - 2017
Fairouz Tchier1, Abdullahi Yusuf2,3, Aliyu Isa Aliyu2,3, Mustafa İnç3
1King Saud University, Department of Applied Mathematics, P.O. Box, 22452, Riyadh 11495, Saudi Arabia
2Federal University Dutse, Science Faculty, Department of Mathematics, PMB 7156, Jigawa, Nigeria
3Firat University, Science Faculty, Department of Mathematics, 23119, Elaziǧ, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Scott, 1973, The soliton: a new concept in applied science, Proc. IEEE, 61, 1443, 10.1109/PROC.1973.9296

Younis, 2015, Analytical and soliton solutions: nonlinear model of nanobioelectronics transmission lines, Appl. Math. Comput., 265, 994

Sardar, 2015, Multiple travelling wave solutions for electrical transmission line model, Nonlinear Dyn., 82, 1317, 10.1007/s11071-015-2240-9

Younis, 2015, Bright, dark and singular solitons in magneto-electro-elastic circular rod, Waves Random Complex Media, 25, 549, 10.1080/17455030.2015.1058993

Ali, 2015, Traveling wave solutions for nonlinear dispersive water wave systems with time dependent coefficients, Nonlinear Dyn., 82, 1755, 10.1007/s11071-015-2274-z

Ricketts, 2006, Electrical soliton oscillator IEEE transactions on microwave theory and techniques, IEEE Microw. Theory Tech. Soc., 54, 373, 10.1109/TMTT.2005.861652

Green, 2010, Optical solitons with higher order dispersion by semiinverse variational principle, progress in electromagnetic research, EMW, 102, 337

Tchier, 2017, Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132, 136, 10.1140/epjp/i2017-11430-0

Al Qurashi, 2017, Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity, Superlattices Microstruct., 105, 183, 10.1016/j.spmi.2017.03.022

Ricketts, 2007, On the selfgeneration of electrical soliton pulses, IEEE J. Solid-State Circuits. IEEE Solid-State Circuits Soc., 42, 1657, 10.1109/JSSC.2007.900291

Ham, 2006, Ordered and chaotic electrical solitons: communication perspectives, IEEE Commun. Mag. IEEE Commun. Soc., 44, 126, 10.1109/MCOM.2006.273109

Kengne, 2007, Propagation of solitary waves on lossy nonlinear transmission lines, IJMP B. World Sci., 23, 1

Koon, 2007, Cutoff solitons and bistability of the discrete inductance- capacitance electrical line: theory and experiments, Phys. Rev. E, 75, 1

Afshari, 2005, Nonlinear transmission lines for pulse shaping in silicon, IEEE J. Solid-State Circuits. IEEE Solid-State Circuits Soc., 40, 744, 10.1109/JSSC.2005.843639

Sataric, 2009, Filaments as nonlinear RLC transmission lines, IJMP B. World Sci., 23, 4697

Mostafa, 2009, Analytical study for the ability of nonlinear transmission lines to generate solitons, Chaos, Solit. Fractals, 39, 2125, 10.1016/j.chaos.2007.06.083

Dimas, 2005, SYM : a new symmetry finding package for Mathematica, 64

Ibragimov, 2007, A new conservation theorem, J. Math. Anal. Appl., 333, 311, 10.1016/j.jmaa.2006.10.078

Ibragimov, 2011, Nonlinear self-adjointness and conservation laws, J. Phys. A Math. Theor., 44, 432002, 10.1088/1751-8113/44/43/432002

Ibragimov, 2011, Nonlinear self-adjointness in Constructing conservation laws, Arch. ALGA 7/8, 90

Khamitova, 2009

Noether, 1918, Invariant variation problem, Mathematisch-Physikalische Kl., 2, 235

Ibragimov, 2007, A new Conservation laws theorem, J. Math. Anal., 333, 311, 10.1016/j.jmaa.2006.10.078

Ibragimov, 2011, Nonlinear self-adjointness in constructing conservation laws, Arch. ALGA, 44

Maliet, 1992, Solitary wave solutions of nonlinear wave equation, Am. J. Phys., 60, 650, 10.1119/1.17120

Maliet, 1996, The tanh method: exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563, 10.1088/0031-8949/54/6/003

Wazwaz, 2004, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 714

Fan, 2002, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305, 383, 10.1016/S0375-9601(02)01516-5

Liu, 2001, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69, 10.1016/S0375-9601(01)00580-1

Zhao, 2006, Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system, Chaos Solit. Fractals, 28, 112, 10.1016/j.chaos.2005.05.016

Wang, 2008, The (G′G)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A, 372, 417, 10.1016/j.physleta.2007.07.051

Zhang, 2008, A generalized (G′G) - expansion method for the mKdv equation with variable coefficients, Phys. Lett. A, 372, 2254, 10.1016/j.physleta.2007.11.026

Zayed, 2009, The (G′G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. Math. Phys., 50, 013502, 10.1063/1.3033750

Zayed, 2009, The (G′G) - expansion method and its applications to some nonlinear evolution equations in mathematical physics, J. Appl. Math. Comput., 30, 89, 10.1007/s12190-008-0159-8

X.F. Yang, Z.C. Deng, and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. in Differ. Equ., http://dx.doi.org/10.1186/s13662-015-0452-4.

D. L. Sekulic, M. V. Sataric, M. B. Zivanov, J. S. Bajic, Soliton-like pulses along electrical nonlinear transmission line, Electron. Electr. Eng., http://dx.doi.org/10.5755/j01.eee.121.5.1652.