Soliton solutions and conservation laws for lossy nonlinear transmission line equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Scott, 1973, The soliton: a new concept in applied science, Proc. IEEE, 61, 1443, 10.1109/PROC.1973.9296
Younis, 2015, Analytical and soliton solutions: nonlinear model of nanobioelectronics transmission lines, Appl. Math. Comput., 265, 994
Sardar, 2015, Multiple travelling wave solutions for electrical transmission line model, Nonlinear Dyn., 82, 1317, 10.1007/s11071-015-2240-9
Younis, 2015, Bright, dark and singular solitons in magneto-electro-elastic circular rod, Waves Random Complex Media, 25, 549, 10.1080/17455030.2015.1058993
Ali, 2015, Traveling wave solutions for nonlinear dispersive water wave systems with time dependent coefficients, Nonlinear Dyn., 82, 1755, 10.1007/s11071-015-2274-z
Ricketts, 2006, Electrical soliton oscillator IEEE transactions on microwave theory and techniques, IEEE Microw. Theory Tech. Soc., 54, 373, 10.1109/TMTT.2005.861652
Green, 2010, Optical solitons with higher order dispersion by semiinverse variational principle, progress in electromagnetic research, EMW, 102, 337
Tchier, 2017, Dynamics of solitons to the ill-posed Boussinesq equation, Eur. Phys. J. Plus, 132, 136, 10.1140/epjp/i2017-11430-0
Al Qurashi, 2017, Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity, Superlattices Microstruct., 105, 183, 10.1016/j.spmi.2017.03.022
Ricketts, 2007, On the selfgeneration of electrical soliton pulses, IEEE J. Solid-State Circuits. IEEE Solid-State Circuits Soc., 42, 1657, 10.1109/JSSC.2007.900291
Ham, 2006, Ordered and chaotic electrical solitons: communication perspectives, IEEE Commun. Mag. IEEE Commun. Soc., 44, 126, 10.1109/MCOM.2006.273109
Kengne, 2007, Propagation of solitary waves on lossy nonlinear transmission lines, IJMP B. World Sci., 23, 1
Koon, 2007, Cutoff solitons and bistability of the discrete inductance- capacitance electrical line: theory and experiments, Phys. Rev. E, 75, 1
Afshari, 2005, Nonlinear transmission lines for pulse shaping in silicon, IEEE J. Solid-State Circuits. IEEE Solid-State Circuits Soc., 40, 744, 10.1109/JSSC.2005.843639
Sataric, 2009, Filaments as nonlinear RLC transmission lines, IJMP B. World Sci., 23, 4697
Mostafa, 2009, Analytical study for the ability of nonlinear transmission lines to generate solitons, Chaos, Solit. Fractals, 39, 2125, 10.1016/j.chaos.2007.06.083
Dimas, 2005, SYM : a new symmetry finding package for Mathematica, 64
Ibragimov, 2007, A new conservation theorem, J. Math. Anal. Appl., 333, 311, 10.1016/j.jmaa.2006.10.078
Ibragimov, 2011, Nonlinear self-adjointness and conservation laws, J. Phys. A Math. Theor., 44, 432002, 10.1088/1751-8113/44/43/432002
Ibragimov, 2011, Nonlinear self-adjointness in Constructing conservation laws, Arch. ALGA 7/8, 90
Khamitova, 2009
Noether, 1918, Invariant variation problem, Mathematisch-Physikalische Kl., 2, 235
Ibragimov, 2007, A new Conservation laws theorem, J. Math. Anal., 333, 311, 10.1016/j.jmaa.2006.10.078
Ibragimov, 2011, Nonlinear self-adjointness in constructing conservation laws, Arch. ALGA, 44
Maliet, 1992, Solitary wave solutions of nonlinear wave equation, Am. J. Phys., 60, 650, 10.1119/1.17120
Maliet, 1996, The tanh method: exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54, 563, 10.1088/0031-8949/54/6/003
Wazwaz, 2004, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput., 154, 714
Fan, 2002, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305, 383, 10.1016/S0375-9601(02)01516-5
Liu, 2001, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69, 10.1016/S0375-9601(01)00580-1
Zhao, 2006, Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system, Chaos Solit. Fractals, 28, 112, 10.1016/j.chaos.2005.05.016
Wang, 2008, The (G′G)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics, Phys. Lett. A, 372, 417, 10.1016/j.physleta.2007.07.051
Zhang, 2008, A generalized (G′G) - expansion method for the mKdv equation with variable coefficients, Phys. Lett. A, 372, 2254, 10.1016/j.physleta.2007.11.026
Zayed, 2009, The (G′G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, J. Math. Phys., 50, 013502, 10.1063/1.3033750
Zayed, 2009, The (G′G) - expansion method and its applications to some nonlinear evolution equations in mathematical physics, J. Appl. Math. Comput., 30, 89, 10.1007/s12190-008-0159-8
X.F. Yang, Z.C. Deng, and Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. in Differ. Equ., http://dx.doi.org/10.1186/s13662-015-0452-4.