Soliton groups as the reason for extreme statistics of unidirectional sea waves
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akhmediev NN, Ankiewicz A (1997) Solitons. nonlinear pulses and beams. Chapman & Hall, London
Babanin A (2011) Breaking and dissipation of ocean surface waves. Cambridge University Press, Cambridge
Chabchoub A (2016) Tracking breather dynamics in irregular sea state conditions. Phys Rev Lett 117:144103
Chabchoub A, Hoffmann N, Onorato M, Akhmediev N (2012a) Super rogue waves: observation of a higher-order breather in water waves. Phys Rev X 2:011015
Chabchoub A, Hoffmann N, Onorato M, Slunyaev A, Sergeeva A, Pelinovsky E, Akhmediev N (2012b) Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys Rev E 86:056601. doi: 10.1103/PhysRevE.86.056601
Chabchoub A, Hoffmann NP, Akhmediev N (2011) Rogue wave observation in a water wave tank. Phys Rev Lett 106:204502
Chien H, Kao C-C, Chuang LZH (2002) On the characteristics of observed coastal freak waves. Coast Eng J 44:301–319
Cousins W, Sapsis TP (2016) Reduced-order precursors of rare events in unidirectional nonlinear water waves. J Fluid Mech 790:368–388
Dommermuth D (2000) The initialization of nonlinear waves using an adjustment scheme. Wave Motion 32:307–317
Drazin PG, Johnson RS (1996) Solitons: an introduction. Cambridge Univeristy Press, Cambridge
Dyachenko AI, Zakharov VE (2008) On the formation of freak waves on the surface of deep water. JETP Lett 88:307–311
Gramstad O, Trulsen K (2007) Influence of crest and group length on the occurrence of freak waves. J Fluid Mech 582:463–472
Islas AL, Schober CM (2005) Predicting rogue waves in random oceanic sea states. Phys Fluids 17:031701
Kharif C, Pelinovsky E, Slunyaev A (2009) Rogue waves in the Ocean. Springer, Berlin, Heidelberg
Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:1245–1266
Massel SR (1996) Ocean surface waves: their physics and prediction. World Scientifc Publication, Singapore
Mori N, Janssen PAEM (2006) On kurtosis and occurrence probability of freak waves. J Phys Oceanogr 36:1471–1483
Mori N, Liu PC, Yasuda T (2002) Analysis of freak wave measurements in the Sea of Japan. Ocean Eng 29:1399–1414
Mori N, Onorato M, Janssen PAEM (2011) On the estimation of the kurtosis in directional sea states for freak wave forecasting. J Phys Oceanogr 41:1484–1497
Onorato M, Osborne AR, Serio M (2002) Extreme wave events in directional, random oceanic sea states. Phys Fluids 14:L25–L28
Onorato M, Osborne AR, Serio M, Bertone S (2001) Freak waves in random oceanic sea states. Phys Rev Lett 86:5831–5834
Onorato M, Proment D, El G, Randoux S, Suret P (2016) On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type. Phys Lett A 380:3173–3177
Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen PA, Kinoshita T, Monbaliu J, Mori N, Osborne AR, Serio M, Stansberg CT, Tamura H, Trulsen K (2009) Statistical properties of directional ocean waves: the role of the modulational instability in the formation of extreme events. Phys Rev Lett 102:114502
Osborne AR (2010) Nonlinear ocean waves and the Inverse Scattering Transform. Academic Press, New York
Pickartz S, Bandelow U, Amiranashvili Sh (2016) Adiabatic theory of solitons fed by dispersive waves. Phys Rev A 94:033811
Sergeeva A, Slunyaev A (2013) Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states. Nat Hazards Earth Syst Sci 13:1759–1771. doi: 10.5194/nhess-13-1759-2013
Shemer L, Sergeeva A (2009) An experimental study of spatial evolution of statistical parameters in a unidirectional narrow-banded random wavefield. J Geophys Res Oceans 114:C01015
Shemer L, Sergeeva A, Slunyaev A (2010) Applicability of envelope model equations for simulation of narrow-spectrum unidirectional random field evolution: experimental validation. Phys Fluids 22:016601. doi: 10.1063/1.3290240
Slunyaev A (2010) Freak wave events and the wave phase coherence. Eur Phys J Spec Topics 185:67–80. doi: 10.1140/epjst/e2010-01239-6
Slunyaev A (2006) Nonlinear analysis and simulations of measured freak wave time series. Eur J Mech B Fluids 25:621–635
Slunyaev AV (2009) Numerical simulation of ”limiting” envelope solitons of gravity waves on deep water. JETP 109:676–686
Slunyaev A, Clauss GF, Klein M, Onorato M (2013a) Simulations and experiments of short intense envelope solitons of surface water waves. Phys Fluids 25:067105. doi: 10.1063/1.4811493
Slunyaev A, Klein M, Clauss GF (2017) Laboratory and numerical study of intense envelope solitons of water waves: generation, reflection from a wall and collisions. Phys Fluids 29:04710. doi: 10.1063/1.4979524
Slunyaev A, Pelinovsky E, Sergeeva A, Chabchoub A, Hoffmann N, Onorato M, Akhmediev N (2013b) Super rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations. Phys Rev E 88:012909. doi: 10.1103/PhysRevE.88.012909
Slunyaev A, Sergeeva A, Didenkulova I (2016) Rogue events in spatiotemporal numerical simulations of unidirectional waves in basins of different depth. Nat Hazards 84:549–565. doi: 10.1007/s11069-016-2430-x
Slunyaev AV, Sergeeva AV (2012) Numerical simulations and analysis of spatio-temporal fields of rogue waves. Fundam Appl Hydrophys 5:24–36 [In Russian]
Slunyaev AV, Shrira VI (2013) On the highest non-breaking wave in a group: fully nonlinear water wave breathers vs weakly nonlinear theory. J Fluid Mech 735:203–248
Socquet-Juglard H, Dysthe K, Trulsen K, Krogstad HE, Liu J-D (2005) Probability distributions of surface gravity waves during spectral changes. J Fluid Mech 542:195–216
Soto-Crespo JM, Devine N, Akhmediev N (2016) Integrable turbulence and rogue waves: breathers or solitons? Phys Rev Lett 116:103901
Waseda T, Kinoshita T, Tamura H (2009) Evolution of a random directional wave and freak wave occurrence. J Phys Oceanogr 39:621–639
West BJ, Brueckner KA, Janda RS, Milder DM, Milton RL (1987) A new numerical method for surface hydrodynamics. J Geophys Res 92:11803–11824
Xiao W, Liu Y, Wu G, Yue DKP (2013) Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J Fluid Mech 720:357–392