Soliton Solutions for Quasilinear Schrödinger Equations Involving Convolution and Critical Nonlinearities

The Journal of Geometric Analysis - Tập 32 - Trang 1-48 - 2021
Sihua Liang1, Binlin Zhang2
1College of Mathematics, Changchun Normal University, Changchun, People’s Republic of China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, People’s Republic of China

Tóm tắt

In this paper, we establish the existence, multiplicity and concentration behaviour of positive solutions for quasilinear Schrödinger equations with Choquard term and critical nonlinearities: $$\begin{aligned} -\varepsilon ^{p}(\Delta _p u+u\Delta _p(u^2))+ V(x)|u|^{p-2}u = \varepsilon ^{\mu -N}\left( |x|^{-\mu }*F(u)\right) f(u) + |u|^{2p^*-2}u, \end{aligned}$$ where $$\varepsilon >0$$ is a parameter, $$0<\mu

Tài liệu tham khảo

Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004) Alves, C.O., Yang, M.: Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. 55, 061502 (2014) Alves, C.O., Yang, M.: Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method. Proc. R. Soc. Edinb. Sect. A 146, 23–58 (2016) Alves, C.O., Figueiredo, G.M., Severo, U.B.: Multiplicity of positive solutions for a class of quasilinear problems. Adv. Differ. Equ. 14, 911–942 (2009) Alves, C.O., Gao, F., Squassina, M., Yang, M.: Singularly perturbed critical Choquard equations. J. Differ. Equ. 263, 3943–3988 (2017) Ambrosetti, A., Malchiodi, A.: Concentration phenomena for nonlinear Schrödinger equations: recent results and new perspectives. In Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, pp. 19–30. American Mathematical Society, Providence (2007) Bergé, L., Couairon, A.: Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas 7, 210–230 (2000) Colin, M., Jeanjean, L.: Solutions for a quasilinear Schr\(\ddot{\text{ o }}\)dinger equations: a dual approach. Nonlinear Anal. 56, 213–226 (2004) Costa, D.G.: On a class of elliptic systems in \(\mathbb{R}^N\). Electron. J. Differ. Equ. 7, 1–14 (1994) Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999) DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate results elliptic equations. Nonlinear Anal. 7, 827–850 (1983) Drábek, P., Huang, Y.X.: Multiplicity of positive solutions for some quasilinear elliptic equation in \(\mathbb{R}^N\) with critical Sobolev exponent. J. Differ. Equ. 140, 106–132 (1997) He, X., Qian, A., Zou, W.: Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth. Nonlinearity 26, 3137–3168 (2013) Kichenassamy, S., Véron, L.: Singular solutions of the \(p\)-Laplace equation. Math. Ann. 275, 599–615 (1985) Liang, S., Shi, S.: Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb{R}^N\). Nonlinear Anal. 81, 31–41 (2013) Liang, S., Repovs̆, D., Zhang, B.: Fractional magnetic Schrödinger–Kirchhoff problems with convolution and critical nonlinearities. Math. Methods Appl. Sci. 43, 2473–2490 (2020) Liang, S., Wen, L., Zhang, B.: Solutions for a class of quasilinear Choquard equations with Hardy–Littlewood–Sobolev critical nonlinearity. Nonlinear Anal. 198, 111888 (2020) Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math., 57, 93–105 (1976/1977) Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980) Liu, J.Q., Wang, Y.Q., Wang, Z.-Q.: Soliton solutions to quasilinear Schr\(\ddot{\text{ o }}\)dinger equations. II. J. Differ. Equ. 187, 473–493 (2003) Liu, J.Q., Wang, Y.Q., Wang, Z.-Q.: Solutions for quasilinear Schr\(\ddot{\text{ o }}\)dinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004) Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010) Mingqi, X., Rădulescu, V., Zhang, B.: A critical fractional Choquard–Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21, 36 (2019) Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013) Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015) Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52, 199–235 (2015) Papageorgiou, N., Rădulescu, V., Repovš, D.: Nonlinear Analysis-Theory and Methods. Springer, Berlin, Heidelberg (2019) Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954) Poppenberg, M., Schmitt, K., Wang, Z.-Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002) Pucci, P., Xiang, M., Zhang, B.: Existence results for Schrödinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12, 253–275 (2019) Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1982) Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, In: CBMS Reg. Conf. Series in Math, vol. 65 (1984) Severo, U.: Existence of weak solutions for quasilinear elliptic equations involving the \(p\)-Laplacian. Electron. J. Differ. Equ. 2008, 1–16 (2008) Teng, K., Yang, X.: Existence and concentration behavior of solutions for a class of quasilinear elliptic equations with critical growth. Adv. Nonlinear Anal. 8, 339–371 (2019) Tolksdorff, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984) Trudinger, N.S.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967) Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 22 (2009) Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäser, Boston/Basel/Berlin (1996) Xiang, M., Zhang, B., Rădulescu, V.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020) Yang, X., Zhang, W., Zhao, F.: Existence and multiplicity of solutions for a quasilinear Choquard equation via perturbation method. J. Math. Phys. 59, 081503 (2018) Yang, X., Tang, X., Gu, G.: Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Elliptic Equ. 65, 1515–1547 (2020) Yang, X., Tang, X., Gu, G.: Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 43, 3569–3585 (2020) Zhang, W., Wu, X.: Existence, multiplicity, and concentration of positive solutions for a quasilinear Choquard equation with critical exponent. J. Math. Phys. 60, 051501 (2019)