Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hóa học bề mặt rắn của montmorillonite: cơ chế oxy hóa arsenite dưới bức xạ UV-A
Tóm tắt
Sự chuyển đổi các dạng asen vô cơ đã thu hút sự quan tâm lớn trong những thập kỷ gần đây do tình trạng ô nhiễm phụ thuộc vào đặc điểm của chúng trên toàn cầu và những mối nguy hiểm mà chúng gây ra cho môi trường cũng như sức khỏe con người. Quá trình quang ôxy hóa As(III) trong hệ thống nước đã được nghiên cứu nhiều, nhưng rất ít thông tin về sự chuyển hóa quang hóa của các dạng asen trên bề mặt đất. Quá trình quang ôxy hóa As(III) trên montmorillonite tự nhiên dưới bức xạ UV-A đã được nghiên cứu bằng cách sử dụng một buồng quang hóa có kiểm soát độ ẩm và nhiệt độ với hai đèn huỳnh quang đen. Nồng độ As(III) ban đầu, pH, độ dày lớp, nồng độ axit humic (HA), sự hiện diện của các ion sắt bổ sung và sự đóng góp của các loài oxy phản ứng (ROS) đã được xem xét. Kết quả cho thấy rằng giá trị pH của các lớp đất sét ảnh hưởng rất lớn đến quá trình quang ôxy hóa As(III) trên montmorillonite. Quá trình quang ôxy hóa As(III) tuân theo mô hình Langmuir–Hinshelwood. HA và các ion sắt bổ sung đã thúc đẩy đáng kể quá trình quang ôxy hóa, nhưng lượng Fe(II) dư thừa đã cạnh tranh với As(III) để bị oxy hóa bởi ROS. Các thí nghiệm thu gom cho thấy montmorillonite tự nhiên đã kích thích sự chuyển đổi As(III) thành As(V) thông qua việc tạo ra ROS (chủ yếu là HO• và HO2•/O2•−) và gốc tự do HO• là tác nhân oxy hóa chính trong hệ thống này. Công việc của chúng tôi chứng minh rằng quá trình quang ôxy hóa trên bề mặt của các khoáng chất đất sét tự nhiên trong đất có thể là rất quan trọng để chuyển hóa As(III). Điều này cho phép hiểu và dự đoán sự đặc trưng và hành vi của asen trên bề mặt đất.
Từ khóa
#arsenic #photooxidation #montmorillonite #reactive oxygen species #soil chemistryTài liệu tham khảo
Ascar L, Ahumada I, Ahumada P (2008) Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72:1548–1552
Bhandari N, Reeder RJ, Strongin DR (2011) Photoinduced oxidation of arsenite to arsenate on ferrihydrite. Environ Sci Technol 45:2783–2789
Bhandari N, Reeder RJ, Strongin DR (2012) Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Environ Sci Technol 46:8044–8051
Bhattacharyya KG, Sen GS (2006) Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf A 277:191–200
Biaglow JE, Kachur AV (1997) The generation of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate complexes of ferrous ion. Radiat Res 148:272–278
Borho M, Wilderer P (1996) Optimized removal of arsenate(III) by adaptation of oxidation and precipitation processes to the filtration step. Water Sci Technol 34:25–31
Boscá F, Canudas N, Marin ML, Miranda MA (2000) A photophysical and photochemical study of 6-methoxy-2-naphthylacetic acid, the major metabolite of the phototoxic nonsteroidal antiinflammatory drug nabumetone. Photochem Photobiol 71:173–177
Chang Chien SW, Chang CH, Chen SH, Wang MC, Madhava RM, Satya VS (2011) Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2. Sci Total Environ 409:4101–4108
Chen L, Deng C, Wu F, Deng NS (2011) Decolorization of the azo dye Orange II in a montmorillonite/H2O2 system. Desalination 281:306–311
Chen Y, Zhang K, Zuo YG (2013) Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Sci Total Environ 463:802–809
Deng CY, Ren C, Wu F, Deng NS, Glebov EM, Pozdnyakov IP, Plyusnin VF (2010) Montmorillonite KSF as catalyst for degradation of acetaminophen with heterogeneous Fenton reactions. React Kinet Mech Catal 100:277–288
Desesso JM, Jacobson CF, Scialli AR, Farr C, Holson J (1998) An assessment of the developmental toxicity of inorganic arsenic. Reprod Toxicol 12:385–433
Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834
Eblin KE, Hau AM, Jensen TJ, Futscher BW, Gandolfi AJ (2008) The role of reactive oxygen species in arsenite and monomethylarsonous acid-induced signal transduction in human bladder cells: acute studies. Toxicology 250:47–54
Feng M, Schrlau JE, Snyder R, Snyder GH, Chen M, Cisar JL, Cai Y (2005) Arsenic transport and transformation associated with MSMA application on a golf course green. J Agric Food Chem 53:3556–3562
Granados OG, Gómez VV, Nieto C (2013) Photoproduction of H2O2 and hydroxyl radicals catalysed by natural and super acid-modified montmorillonite and its oxidative role in the peroxidation of lipids. RSC Adv 3:937–944
Hebert VR, Miller GC (1990) Depth dependence of direct and indirect photolysis on soil surfaces. J Agric Food Chem 38:913–918
Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16
Iesce MR, Cermola F, Graziano ML, Montella S, Di G, Isidori M (2004) Sensitized photooxygenation of the fungicide furalaxyl. Environ Sci Pollut Res 11:222–226
Iserte LO, Roig-Navarro AF, Hernandez F (2004) Simultaneous determination of arsenic and selenium species in phosphoric acid extracts of sediment samples by HPLC-ICP-MS. Anal Chim Acta 527:97–104
Kraepiel AM, Keller K, Morel FM (1999) A model for metal adsorption on montmorillonite. J Colloid Interface Sci 210:43–54
Li J, Wu F, Mailhot G, Deng NS (2010) Photodegradation of chloroform in aqueous solution: impact of montmorillonite KSF particles. J Hazard Mater 174:368–374
Li J, Mailhot G, Wu F, Deng NS (2012) Photodegradation of E2 in the presence of natural montmorillonite and the iron complexing agent ethylenediamine-N, N′-disuccinic acid. Photochem Photobiol Sci 11:1880–1885
Liu YX, Zhang X, Wu F (2010) Photodegradation of bisphenol AF in montmorillonite dispersions: kinetics and mechanism study. Appl Clay Sci 49:182–186
Liu YX, Lu XJ, Wu F, Deng NS (2011) Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. React Kinet Mech Catal 104:61–73
Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral–water interface. Environ Sci Technol 31:2005–2011
Mercier L, Detellier C (1995) Preparation, characterization, and applications as heavy metal sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite. Environ Sci Technol 29:1318–1323
Ou XX, Chen S, Quan X, Zhao H (2008) Photoinductive activity of humic acid fractions with the presence of Fe (III): the role of aromaticity and oxygen groups involved in fractions. Chemosphere 72:925–931
Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896
Ren C, Peng H, Wang YJ, Huang WY, Wu F (2011) Speciation of inorganic As(V)/As(III) in water and soil by hydride generation-atomic fluorescence spectrometry. Fresenius Environ Bull 20:1069–1074
Ren WJ, Teng Y, Zhou QX, Albrecht P, Gerrit S (2014) Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength. Environ Sci Pollut Res 21:11587–11597
Sracek O, Bhattacharya P, Jacks G, Gustafsson JP, Brömssen MV (2004) Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Appl Geochem 19:169–180
Suzuki T, Kawai K, Moribe M, Niinae M (2014) Recovery of Cr as Cr (III) from Cr (VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J Hazard Mater 278:297–303
Tuzen M, Saygi KO, Karaman I, Soylak M (2010) Selective speciation and determination of inorganic arsenic in water, food and biological samples. Food Chem Toxicol 48:41–46
Wang DG, György I, Hildenbrand K, Von SC (1994) Free radical induced oxidation of phloroglucinol. A pulse radiolysis and EPR study. J Chem Soc Perkin Trans 2:45–55
Wang YJ, Xu J, Zhao Y, Zhang L, Xiao M, Wu F (2013a) Photooxidation of arsenite by natural goethite in suspended solution. Environ Sci Pollut Res 31
Wang YJ, Xu J, Li JJ, Wu F (2013b) Natural montmorillonite induced photooxidation of As(III) in aqueous suspensions: roles and sources of hydroxyl and hydroperoxyl/superoxide radicals. J Hazard Mater 260:255–262
Wilson SC, Tighe M, Paterson E, Ashley PM (2014) Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils. Environ Sci Pollut Res 21:11671–11681
Woods R, Kolthoff IM, Meehan EJ (1963) Arsenic (IV) as an intermediate in the induced oxidation of arsenic(III) by the iron (II) persulfate reaction and the photoreduction of iron(III). I. Presence of oxygen. J Am Chem Soc 85:3334–3337
Wu F, Deng NS (2000) Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. Chemosphere 41:1137–1147
Wu F, Li J, Peng ZE, Deng NS (2008) Photochemical formation of hydroxyl radicals catalyzed by montmorillonite. Chemosphere 72:407–413
Xu J, Li J, Wu F, Zhang Y (2013) Rapid photooxidation of As (III) through surface complexation with nascent colloidal ferric hydroxide. Environ Sci Technol 48:272–278
Zuo YG (1994) Light-induced oxidation of bisulfite-aldehyde adducts in real fogwater. Naturwissenschaften 81:505–507
Zuo YG, Deng YW (1997) Iron(II) catalyzed photolysis of organic compounds in atmospheric water. Chemosphere 35:2051–2058
Zuo YG, Hoigné J (1992) Formation of H2O2 and decomposition of oxalate in atmospheric water by sunlight inducing photolysis of Fe(III) oxalate complexes. Environ Sci Technol 26:1014–1022
Zuo YG, Zhan J, Wu TX (2005) Effects of monochromatic UV-visible light and sunlight on fe(III)-catalyzed oxidation of dissolved sulfur dioxide. J Atmos Chem 50:195–210