Solid-state mechanochemistry advancing two dimensional materials for lithium-ion storage applications: A mini review
Tài liệu tham khảo
Goodenough, 2013, J. Am. Chem. Soc., 135, 1167, 10.1021/ja3091438
Sun, 2016, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71
Zhang, 2021, Nano Mater. Sci., 3, 124, 10.1016/j.nanoms.2020.10.006
Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297
Chen, 2018, Adv. Energy Mater., 8
Mirzapour, 2019, J. Ambient Intell. Hum. Comput., 10, 77, 10.1007/s12652-017-0600-7
Meng, 2018, Science, 361, 1094, 10.1126/science.aat2612
Yuan, 2019, Joule, 3, 1140, 10.1016/j.joule.2019.01.004
Saliba, 2016, Science, 354, 206, 10.1126/science.aah5557
Zhang, 2018, Int. J. Energy Res., 42, 2456, 10.1002/er.4028
Wang, 2019, Energy Convers. Manag., 199
Xia, 2020, Appl. Clay Sci., 189, 10.1016/j.clay.2020.105523
Badmus, 2021, Nano Mater. Sci., 3, 213, 10.1016/j.nanoms.2020.11.003
Gao, 2017, Nano Energy, 41, 210, 10.1016/j.nanoen.2017.09.037
Zhao, 2019, Nano-Micro Lett., 11, 1, 10.1007/s40820-018-0235-z
Bhatta, 2020, Adv. Funct. Mater., 30
Zi, 2016, ACS Nano, 10, 4797, 10.1021/acsnano.6b01569
Peng, 2016, Adv. Energy Mater., 6, 10.1002/aenm.201600025
Bruce, 2012, Nat. Mater., 11, 19, 10.1038/nmat3191
Etacheri, 2011, Energy Environ. Sci., 4, 3243, 10.1039/c1ee01598b
Reddy, 2021, Electrochem. Energy Rev.
Kang, 2015, Adv. Funct. Mater., 25, 4203, 10.1002/adfm.201500527
Wang, 2014, Nat. Commun., 5, 1
Kang, 2016, Small, 12, 6370, 10.1002/smll.201600979
Chae, 2020, Angew. Chem. Int. Ed., 59, 110, 10.1002/anie.201902085
Li, 2020, Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries, Nano Energy, 77, 10.1016/j.nanoen.2020.105143
Goriparti, 2014, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257, 421, 10.1016/j.jpowsour.2013.11.103
Tan, 2017, Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558
Zhao, 2011, Adv. Energy Mater., 1, 1079, 10.1002/aenm.201100426
Wang, 2011, Nano Lett., 11, 2644, 10.1021/nl200658a
Wang, 2009, J. Mater. Chem., 19, 8378, 10.1039/b914650d
Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896
Chen, 2019, Adv. Mater., 31
Leidinger, 2021, ACS Nano, 15, 12201, 10.1021/acsnano.1c03809
Hao, 2016, Nat. Nanotechnol., 11, 426, 10.1038/nnano.2015.322
Yang, 2018, Carbon, 138, 390, 10.1016/j.carbon.2018.07.056
Wu, 2020, Chem. Eng. J., 381
Wan, 2018, J. Colloid Interface Sci., 526, 167, 10.1016/j.jcis.2018.04.110
Gu, 2019, Ultrason. Sonochem., 58, 104630, 10.1016/j.ultsonch.2019.104630
Kang, 2016, Proc. Natl. Acad. Sci. Unit. States Am., 113, 11688, 10.1073/pnas.1602215113
Shen, 2015, Nano Lett., 15, 5449, 10.1021/acs.nanolett.5b01842
Li, 2017, Electrochim. Acta, 258, 1484, 10.1016/j.electacta.2017.12.021
Raj, 2021, Carbon, 184, 266, 10.1016/j.carbon.2021.08.027
Wang, 2014, ACS Nano, 8, 4940, 10.1021/nn500959v
Kubota, 2020, Trends Chem, 2, 1066, 10.1016/j.trechm.2020.09.006
Zhang, 2015, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040
Jeon, 2015, Adv. Funct. Mater., 25, 6961, 10.1002/adfm.201502214
Jeon, 2015, Adv. Funct. Mater., 25, 1170, 10.1002/adfm.201403836
Jeon, 2012, Proc. Natl. Acad. Sci. Unit. States Am., 109, 5588, 10.1073/pnas.1116897109
Zhao, 2015, ACS Appl. Mater. Interfaces, 7, 14446, 10.1021/acsami.5b03477
Li, 2014, J. Mater. Chem., 2, 10211, 10.1039/C4TA01131G
Liu, 2017, J. Power Sources, 342, 157, 10.1016/j.jpowsour.2016.11.110
Kim, 2014, ACS Nano, 8, 2820, 10.1021/nn4066395
Jeon, 2013, Sci. Rep., 3, 1810, 10.1038/srep01810
Jeon, 2013, Sci. Rep., 3, 2260, 10.1038/srep02260
Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017
Xu, 1996, Plast., Rubber Compos. Process. Appl., 25, 152
Zhang, 2009, J. Polym. Res., 16, 411, 10.1007/s10965-008-9243-x
Lu, 2004, J. Mater. Process. Technol., 145, 336, 10.1016/j.jmatprotec.2003.08.002
Shao, 2006, Carbon, 44, 2708, 10.1016/j.carbon.2006.04.006
Jeon, 2015, Nat. Commun., 6, 1, 10.1038/ncomms8123
Fan, 2019, Nano Energy, 62, 419, 10.1016/j.nanoen.2019.05.035
Hong, 2021, J. Mater. Sci., 56, 18200, 10.1007/s10853-021-06403-1
Liu, 2013, Chem. Commun., 49, 7890, 10.1039/c3cc43670e
Li, 2009, Adv. Funct. Mater., 19, 265, 10.1002/adfm.200801111
Wang, 2018, Nano Adv, 3, 27, 10.22180/na223
Jeon, 2012, J. Am. Chem. Soc., 135, 1386, 10.1021/ja3091643
Xue, 2015, 2D Mater., 2, 10.1088/2053-1583/2/4/044001
Xu, 2014, Adv. Mater., 26, 7317, 10.1002/adma.201402987
Guo, 2020, Ionics, 26, 3267, 10.1007/s11581-020-03497-6
Li, 2021, Nano Energy, 80
Zhang, 2021, Nanotechnology, 32
Zhang, 2021, Carbon, 181, 300, 10.1016/j.carbon.2021.05.024
Yu, 2013, Electrochem. Commun., 34, 312, 10.1016/j.elecom.2013.07.013
Ye, 2014, Chem. Eur J., 20, 4055, 10.1002/chem.201304720
Ye, 2015, J. Power Sources, 290, 61, 10.1016/j.jpowsour.2015.05.009
Qiu, 2014, Chem. Eng. J., 256, 247, 10.1016/j.cej.2014.06.116
Li, 2015, J. Mater. Chem. A., 3, 9700, 10.1039/C5TA01350J
Chen, 2012, Adv. Energy Mater., 2, 95, 10.1002/aenm.201100464
Hu, 2014, J. Mater. Chem. A., 2, 9118, 10.1039/C4TA01013B
Sun, 2014, J. Power Sources, 268, 610, 10.1016/j.jpowsour.2014.06.039
Ouyang, 2014, J. Mater. Chem. A., 2, 11280, 10.1039/C4TA01267D
Wang, 2015, J. Power Sources, 288, 314, 10.1016/j.jpowsour.2015.04.076
Wang, 2018, Mater. Rev., 32, 3689, 10.1557/jmr.2018.206
Liu, 2021, Adv. Energy Mater., 11
Sun, 2014, Nano Lett., 14, 4573, 10.1021/nl501617j
Yu, 2015, Adv. Sci., 2, 10.1002/advs.201400020
Fuge, 2004, Diam. Relat. Mater., 13, 1442, 10.1016/j.diamond.2003.11.069
Claeyssens, 2004, Dalton Trans., 19, 3085, 10.1039/b402740j
Li, 2015, Energy Environ. Sci., 8, 3629, 10.1039/C5EE02524A
Li, 2019, Nano Energy, 61, 594, 10.1016/j.nanoen.2019.04.080
Zeng, 2021, Angew. Chem. Int. Ed., 60, 26218, 10.1002/anie.202111498
Qi, 2017, Sci. Rep., 7, 1, 10.1038/s41598-016-0028-x
Li, 2019, Ceram. Int., 45, 15711, 10.1016/j.ceramint.2019.04.219
Wu, 2016, Adv. Mater., 28, 174, 10.1002/adma.201503969
Xie, 2017, J. Mater. Chem. A., 5, 7578, 10.1039/C7TA01154G
Wang, 2017, J. Mater. Chem. A., 5, 4576, 10.1039/C6TA10932B
Nguyen Quoc, 2018, Electrochim. Acta, 260, 129, 10.1016/j.electacta.2017.11.068
Nguyen Quoc, 2019, J. Nanosci. Nanotechnol., 19, 1494, 10.1166/jnn.2019.16154
Zhang, 2019, J. Mater. Sci. Technol., 35, 1840, 10.1016/j.jmst.2019.05.002
Liu, 2020, Ind. Eng. Chem. Res., 59, 16240, 10.1021/acs.iecr.0c02335
Tan, 2017, Chin. J. Appl. Chem., 34, 2248
Momma, 2001, J. Power Sources, 97–8, 198, 10.1016/S0378-7753(01)00723-6
Yan, 2016, RSC Adv., 6, 32414, 10.1039/C6RA03124B
Xia, 2018, Electrochim. Acta, 269, 452, 10.1016/j.electacta.2018.03.022
Zhao, 2018, Prog. Nat. Sci.: Met. Mater. Int., 28, 676, 10.1016/j.pnsc.2018.10.001
Choi, 2019, Appl. Surf. Sci., 466, 578, 10.1016/j.apsusc.2018.09.241
Liu, 2018, Adv. Mater., 30
Xiong, 2018, Small, 14
Zhao, 2019, Nanoscale, 11, 8442, 10.1039/C8NR09653H
Er, 2014, ACS Appl. Mater. Interfaces, 6, 11173, 10.1021/am501144q
Sun, 2014, Electrochem. Commun., 47, 80, 10.1016/j.elecom.2014.07.026
Wang, 2016, Chem. Mater., 28, 349, 10.1021/acs.chemmater.5b04250
Naguib, 2011, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Kim, 2015, Electrochim. Acta, 163, 246, 10.1016/j.electacta.2015.02.132
Ren, 2016, Chemelectrochem, 3, 689, 10.1002/celc.201600059
Anasori, 2017, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98
Ahmed, 2017, Nano Energy, 34, 249, 10.1016/j.nanoen.2017.02.043
Wang, 2017, J. Mater. Sci., 52, 3556, 10.1007/s10853-016-0369-7
Wu, 2017, Adv. Mater., 29
Zhang, 2019, J. Mater. Chem. A., 7, 21766, 10.1039/C9TA07357D
Zhao, 2016, Nano Energy, 30, 603, 10.1016/j.nanoen.2016.10.062
Banerjee, 2013, Nano Energy, 2, 1158, 10.1016/j.nanoen.2013.04.008
Han, 2014, Chem. Commun., 50, 8057, 10.1039/C4CC02691H
Han, 2015, ACS Appl. Mater. Interfaces, 7, 2178, 10.1021/am5081937
Dong, 2017, ACS Appl. Mater. Interfaces, 9, 7160, 10.1021/acsami.6b15757
Niu, 2016, Small, 12, 272, 10.1002/smll.201502207
Sun, 2020, Adv. Energy Mater., 10
Wang, 2017, J. Am. Chem. Soc., 139, 4258, 10.1021/jacs.7b02648
Luo, 2018, Angew. Chem. Int. Ed., 57, 9443, 10.1002/anie.201805540
Wang, 2019, Nanoscale, 11, 5330, 10.1039/C9NR00088G