Solid-state lithium–sulfur batteries: Advances, challenges and perspectives

Materials Today - Tập 40 - Trang 114-131 - 2020
Bing Ding1,2, Jie Wang3, Zengjie Fan1, Shuang Chen1, Qingyang Lin1, Xiangjun Lu4, Hui Dou5, Ashok Kumar Nanjundan6, Gleb Yushin7, Xiaogang Zhang1, Yusuke Yamauchi2,6,8
1Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
3International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
4Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen, 361024, China
5Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
6School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
7School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
8Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea

Tài liệu tham khảo

Bruce, 2012, Nat. Mater., 11, 19, 10.1038/nmat3191 Dunn, 2011, Science, 334, 928, 10.1126/science.1212741 Evers, 2012, Acc. Chem. Res, 46, 1135, 10.1021/ar3001348 Yang, 2013, Chem. Soc. Rev., 42, 3018, 10.1039/c2cs35256g Manthiram, 2013, Acc. Chem. Res, 46, 1125, 10.1021/ar300179v Wu, 2017, Energy Environ. Sci., 10, 435, 10.1039/C6EE02326F Kim, 2015, Adv. Energy Mater., 5, 1501306, 10.1002/aenm.201501306 Fan, 2019, Joule, 3, 361, 10.1016/j.joule.2019.01.003 Pang, 2016, Nat. Energy, 1, 16132, 10.1038/nenergy.2016.132 Rosenman, 2015, Adv. Energy Mater., 5, 1500212, 10.1002/aenm.201500212 Ji, 2009, Nat. Mater, 8, 500, 10.1038/nmat2460 Liang, 2015, Angew. Chem. Int. Ed., 54, 3907, 10.1002/anie.201410174 Xiao, 2012, Adv. Mater., 24, 1176, 10.1002/adma.201103392 Su, 2012, Nat. Commun., 3 Bai, 2016, Nat. Energy, 1, 16094, 10.1038/nenergy.2016.94 Wu, 2018, Energy Environ. Sci., 11, 807, 10.1039/C8EE00419F Wu, 2015, Adv. Mater., 27, 5579, 10.1002/adma.201502289 Suo, 2013, Nat. Commun., 4, 1481, 10.1038/ncomms2513 Lee, 2013, Adv. Mater., 25, 4573, 10.1002/adma.201301579 Wu, 2015, Adv. Mater., 27, 101, 10.1002/adma.201404194 Lin, 2013, Adv. Funct. Mater., 23, 1064, 10.1002/adfm.201200696 Wu, 2015, Adv. Mater., 27, 101, 10.1002/adma.201404194 Cheng, 2017, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115 Basile, 2016, Nat. Commun., 7, 11794, 10.1038/ncomms11794 Sun, 2016, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71 Cheng, 2019, Chem, 5, 74, 10.1016/j.chempr.2018.12.002 Lin, 2015, J. Mater. Chem. A, 3, 936, 10.1039/C4TA04727C Zhu, 2005, J. Power Sources, 139, 269, 10.1016/j.jpowsour.2004.07.002 Quartarone, 2011, Chem. Soc. Rev., 40, 2525, 10.1039/c0cs00081g Goodenough, 2003, Annu. Rev. Mater. Res., 33, 91, 10.1146/annurev.matsci.33.022802.091651 Bachman, 2016, Chem. Rev., 116, 140, 10.1021/acs.chemrev.5b00563 Borodin, 2006, Macromolecules, 39, 1620, 10.1021/ma052277v Nitzan, 1994, J. Phys. Chem., 98, 1765, 10.1021/j100058a009 Berthier, 1983, Solid State Ionics, 11, 91, 10.1016/0167-2738(83)90068-1 Gadjourova, 2001, Nature, 412, 520, 10.1038/35087538 MacGlashan, 1999, Nature, 398, 792, 10.1038/19730 Stoeva, 2003, J. Am. Chem. Soc., 125, 4619, 10.1021/ja029326t Lilley, 2006, J. Am. Chem. Soc., 128, 12036, 10.1021/ja063091u Zhang, 2005, J. Am. Chem. Soc., 127, 18305, 10.1021/ja056129w Scrosati, 2000, J. Electrochem. Soc., 147, 1718, 10.1149/1.1393423 Varzi, 2016, J. Mater. Chem. A, 4, 17251, 10.1039/C6TA07384K Kumar, 2006, J. Chem. Sci., 118, 135, 10.1007/BF02708775 Wang, 2015, Nat. Mater., 14, 1026, 10.1038/nmat4369 Zhang, 2018, Energy Storage Mater., 10, 139, 10.1016/j.ensm.2017.08.015 Jalem, 2013, Chem. Mater., 25, 425, 10.1021/cm303542x Francisco, 2014, Chem. Mater., 26, 4741, 10.1021/cm5013872 Kamaya, 2011, Nat. Mater., 10, 682, 10.1038/nmat3066 Prutsch, 2018, Chem. Mater., 30, 7575, 10.1021/acs.chemmater.8b02753 Soulié, 2002, J. Alloy Compd., 346, 200, 10.1016/S0925-8388(02)00521-2 Croce, 1998, Nature, 394, 456, 10.1038/28818 Chen-Yang, 2002, Solid State Ionics, 150, 327, 10.1016/S0167-2738(02)00457-5 Ryu, 2006, J. Power Sources, 153, 360, 10.1016/j.jpowsour.2005.05.037 Lv, 2015, Chem. Commun., 51, 13454, 10.1039/C5CC05171A Meyer, 1998, Adv. Mater., 10, 439, 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I Xue, 2015, J. Mater. Chem. A, 3, 19218, 10.1039/C5TA03471J Long, 2016, J. Mater. Chem. A, 4, 10038, 10.1039/C6TA02621D Kim, 2015, J. Power Sources, 282, 299, 10.1016/j.jpowsour.2015.02.054 Yao, 2016, Chin. Phys. B, 25 Agrawal, 2008, J. Phys. D Appl. Phys., 41, 10.1088/0022-3727/41/22/223001 Yue, 2016, Energy Storage Mater., 5, 139, 10.1016/j.ensm.2016.07.003 Kerman, 2017, J. Electrochem. Soc., 164, A1731, 10.1149/2.1571707jes Harks, 2017, Adv. Energy Mater., 7, 1601635, 10.1002/aenm.201601635 Huang, 2015, ACS Nano, 9, 3002, 10.1021/nn507178a Huang, 2014, Energy Environ. Sci., 7, 347, 10.1039/C3EE42223B Wang, 2015, Energy Environ. Sci., 8, 1551, 10.1039/C5EE00058K Yu, 2015, ACS Appl. Mater. Interfaces, 7, 16625, 10.1021/acsami.5b04209 Wang, 2016, ACS Energy Lett., 1, 1080, 10.1021/acsenergylett.6b00481 Yu, 2016, Adv. Energy Mater., 6, 1601392, 10.1002/aenm.201601392 Wu, 2016, RSC Adv., 6, S7346 Wang, 2016, ChemElectroChem, 3, 152, 10.1002/celc.201500342 Wang, 2014, Phys. Chem. Chem. Phys., 16, 21225, 10.1039/C4CP03694H Wang, 2016, Chem. Commun., 52, 1637, 10.1039/C5CC08279J Wang, 2017, Solid State Ionics, 300, 67, 10.1016/j.ssi.2016.11.001 Gu, 2017, J. Mater. Chem. A, 5, 13971, 10.1039/C7TA04017B Fu, 2017, Energy Environ. Sci., 10, 1568, 10.1039/C7EE01004D Thangadurai, 2014, Chem. Soc. Rev., 43, 4714, 10.1039/c4cs00020j Fu, 2017, Chem. Mater., 29, 8037, 10.1021/acs.chemmater.7b02339 Hitz, 2019, Mater. Today, 22, 50, 10.1016/j.mattod.2018.04.004 Gong, 2018, Mater. Today, 21, 594, 10.1016/j.mattod.2018.01.001 Xu, 2018, Energy Storage Mater., 15, 458, 10.1016/j.ensm.2018.08.009 Li, 2017, Angew. Chem. Int. Ed., 56, 753, 10.1002/anie.201608924 Huang, 2018, J. Power Sources, 382, 190, 10.1016/j.jpowsour.2017.11.074 Judez, 2018, J. Electrochem. Soc., 165, A6008, 10.1149/2.0041801jes Judez, 2019, ChemElectroChem, 6, 326, 10.1002/celc.201801390 Liang, 2011, J. Power Sources, 196, 3655, 10.1016/j.jpowsour.2010.12.052 Tao, 2017, Nano Lett., 17, 2967, 10.1021/acs.nanolett.7b00221 Judez, 2017, J. Phys. Chem. Lett., 8, 1956, 10.1021/acs.jpclett.7b00593 Marceau, 2016, J. Power Sources, 319, 247, 10.1016/j.jpowsour.2016.03.093 Zhang, 2017, J. Am. Chem. Soc., 139, 13779, 10.1021/jacs.7b06364 Li, 2017, Small, 13 Wang, 2017, J. Phys. Chem. C, 121, 2563, 10.1021/acs.jpcc.6b11136 Wang, 2006, J. Power Sources, 159, 690, 10.1016/j.jpowsour.2005.10.104 Liu, 2015, Nano Lett., 15, 2740, 10.1021/acs.nanolett.5b00600 Choi, 2015, J. Power Sources, 274, 458, 10.1016/j.jpowsour.2014.10.078 Yang, 2017, ACS Appl. Mater. Interfaces, 9, 21773, 10.1021/acsami.7b03806 Chen, 2017, Electrochim. Acta, 258, 1106, 10.1016/j.electacta.2017.11.164 Croce, 2006, J. Power Sources, 161, 560, 10.1016/j.jpowsour.2006.03.069 Hassoun, 2010, Adv. Mater., 22, 5198, 10.1002/adma.201002584 Lee, 2017, J. Mater. Chem. A, 5, 6708, 10.1039/C6TA10755A Lin, 2017, Nano Energy, 31, 478, 10.1016/j.nanoen.2016.11.045 Lin, 2016, Green Chem., 18, 3796, 10.1039/C6GC00444J Zhang, 2015, J. Mater. Chem. A, 3, 10760, 10.1039/C5TA01037C Takada, 2013, Acta Mater., 61, 759, 10.1016/j.actamat.2012.10.034 Hayashi, 2010, J. Solid State Electrochem., 14, 1761, 10.1007/s10008-010-1098-5 Ma, 2018, J. Mater. Sci., 53, 3927, 10.1007/s10853-017-1827-6 Sun, 2017, Nano Energy, 33, 363, 10.1016/j.nanoen.2017.01.028 Hayashi, 2003, Electrochem. Commun., 5, 701, 10.1016/S1388-2481(03)00167-X Hayashi, 2004, Electrochim. Acta, 50, 893, 10.1016/j.electacta.2004.02.061 Hayashi, 2008, J. Power Sources, 183, 422, 10.1016/j.jpowsour.2008.05.031 Nagao, 2012, Electrochem. Commun., 22, 177, 10.1016/j.elecom.2012.06.015 Nagao, 2012, J. Mater. Chem., 22, 10015, 10.1039/c2jm16802b Tachez, 1984, Solid State Ionics, 14, 181, 10.1016/0167-2738(84)90097-3 Homma, 2011, Solid State Ionics, 182, 53, 10.1016/j.ssi.2010.10.001 Liu, 2013, J. Am. Chem. Soc., 135, 975, 10.1021/ja3110895 Chen, 2015, Appl. Phys. Lett., 107, 013904, 10.1063/1.4926725 Gobet, 2014, Chem. Mater., 26, 3558, 10.1021/cm5012058 Yang, 2016, ACS Appl. Mater. Interfaces, 8, 25229, 10.1021/acsami.6b06754 Lin, 2013, ACS Nano, 7, 2829, 10.1021/nn400391h Kanno, 2000, Solid State Ionics, 130, 97, 10.1016/S0167-2738(00)00277-0 Kanno, 2001, J. Electrochem. Soc., 148, A742, 10.1149/1.1379028 Knauth, 2009, Solid State Ionics, 180, 911, 10.1016/j.ssi.2009.03.022 Kobayashi, 2008, J. Power Sources, 182, 621, 10.1016/j.jpowsour.2008.03.030 Nagao, 2013, J. Power Sources, 222, 237, 10.1016/j.jpowsour.2012.08.041 Nagao, 2016, J. Power Sources, 330, 120, 10.1016/j.jpowsour.2016.09.009 Suzuki, 2017, J. Electrochem. Soc., 164, A6178, 10.1149/2.0341701jes Mo, 2012, Chem. Mater., 24, 15, 10.1021/cm203303y Nagata, 2014, J. Power Sources, 263, 141, 10.1016/j.jpowsour.2014.04.032 Nagata, 2014, J. Power Sources, 264, 206, 10.1016/j.jpowsour.2014.04.106 Nagata, 2016, Energy Technol., 4, 484, 10.1002/ente.201500297 Nagata, 2016, J. Power Sources, 329, 268, 10.1016/j.jpowsour.2016.08.058 Teprovich, 2015, J. Mater. Chem. A, 3, 22853, 10.1039/C5TA06549F Maekawa, 2009, J. Am. Chem. Soc., 131, 894, 10.1021/ja807392k Mohtadi, 2017, Nat. Rev. Mater., 2, 16091, 10.1038/natrevmats.2016.91 Unemoto, 2014, Adv. Funct. Mater., 24, 2267, 10.1002/adfm.201303147 Blanchard, 2015, Adv. Funct. Mater., 25, 184, 10.1002/adfm.201402538 Unemoto, 2014, Appl. Phys. Lett., 105, 10.1063/1.4893666 Das, 2016, J. Electrochem. Soc., 163, A2029, 10.1149/2.0771609jes Kim, 2019, Nat. Commun., 10, 1081, 10.1038/s41467-019-09061-9 Yao, 2017, Adv. Energy Mater., 7, 1602923, 10.1002/aenm.201602923 Wu, 2016, ACS Nano, 10, 1333, 10.1021/acsnano.5b06716 Yan, 2019, Nano Lett., 19, 3280, 10.1021/acs.nanolett.9b00882 Ni, 2017, Small, 13, 1603466, 10.1002/smll.201603466 Tao, 2014, Nano Lett., 14, 5288, 10.1021/nl502331f Han, 2016, Nano Lett., 16, 4521, 10.1021/acs.nanolett.6b01754 Li, 2019, Adv. Mater., 31, 1808100, 10.1002/adma.201808100 Lin, 2013, Angew. Chem. Int. Ed., 52, 7460, 10.1002/anie.201300680 Fu, 2016, Proc. Natl. Acad. Sci. USA, 113, 7094, 10.1073/pnas.1600422113 Liu, 2017, Nat. Energy, 2, 17035, 10.1038/nenergy.2017.35 Zhao, 2019, Nat. Energy, 4, 365, 10.1038/s41560-019-0349-7 Monroe, 2005, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854 Xu, 2017, Proc. Natl. Acad. Sci. USA, 114, 57, 10.1073/pnas.1615733114 Khurana, 2014, J. Am. Chem. Soc., 136, 7395, 10.1021/ja502133j Pan, 2015, Adv. Mater., 27, 5995, 10.1002/adma.201502059 Zeng, 2016, J. Am. Chem. Soc., 138, 15825, 10.1021/jacs.6b10088 Whiteley, 2015, Adv. Mater., 27, 6922, 10.1002/adma.201502636 Nam, 2015, Nano Lett., 15, 3317, 10.1021/acs.nanolett.5b00538 Xu, 2019, ACS Energy Lett., 4, 1073, 10.1021/acsenergylett.9b00430 Park, 2018, Adv. Energy Mater., 8, 1800035, 10.1002/aenm.201800035 Miura, 2019, Nat. Rev. Chem., 3, 189, 10.1038/s41570-019-0078-2 Hood, 2018, Adv. Energy Mater., 8, 1800014, 10.1002/aenm.201800014 Mauger, 2017, J. Power Sources, 353, 333, 10.1016/j.jpowsour.2017.04.018 Christensen, 2012, J. Electrochem. Soc., 159, R1, 10.1149/2.086202jes Shen, 2020, Small Methods, 4, 1900592, 10.1002/smtd.201900592 Eshetu, 2018, J. Am. Chem. Soc., 140, 9921, 10.1021/jacs.8b04612 Zhang, 2019, Joule, 3, 1689, 10.1016/j.joule.2019.05.003 Zhang, 2019, Adv. Energy Mater., 9, 1900763, 10.1002/aenm.201900763 Eshetu, 2017, Angew. Chem. Int. Ed., 56, 15368, 10.1002/anie.201709305 Fu, 2019, Energy Environ. Sci., 12, 1404, 10.1039/C8EE03390K Wu, 2018, Energy Environ. Sci., 11, 1803, 10.1039/C8EE00540K Liu, 2018, ACS Appl. Mater. Interfaces, 10, 31240, 10.1021/acsami.8b06366 Zhang, 2018, ACS Appl. Mater. Interfaces, 10, 2556, 10.1021/acsami.7b16176 Cheng, 2019, Joule, 3, 1510, 10.1016/j.joule.2019.03.022 Wang, 2018, Nano Energy, 53, 168, 10.1016/j.nanoen.2018.08.030 Fan, 2019, Small, 15, 1903952, 10.1002/smll.201903952 Duan, 2019, Adv. Mater., 31 Yang, 2019, Adv. Mater., 31, 1804815, 10.1002/adma.201804815 Wang, 2018, Nano Energy, 48, 35, 10.1016/j.nanoen.2018.03.020 Han, 2017, Nat. Mater., 16, 572, 10.1038/nmat4821 Yu, 2017, Nat. Commun., 8, 1086, 10.1038/s41467-017-01187-y Zhu, 2017, J. Power Sources, 351, 17, 10.1016/j.jpowsour.2017.03.072 Judez, 2017, J. Phys. Chem. Lett., 8, 3473, 10.1021/acs.jpclett.7b01321 Huo, 2019, Adv. Energy Mater., 9, 1804004, 10.1002/aenm.201804004 Zheng, 2016, Angew. Chem. Int. Ed., 55, 12538, 10.1002/anie.201607539 Zhang, 2017, Chem. Soc. Rev., 46, 797, 10.1039/C6CS00491A Bouchet, 2013, Nat. Mater., 12, 452, 10.1038/nmat3602 Ma, 2016, Angew. Chem. Int. Ed., 55, 2521, 10.1002/anie.201509299 Villaluenga, 2017, Macromolecules, 50, 1998, 10.1021/acs.macromol.6b02522 Sahu, 2014, Energy Environ. Sci., 7, 1053, 10.1039/C3EE43357A Heo, 2018, Adv. Energy Mater., 8, 1702716, 10.1002/aenm.201702716 Y. Xiang et al., Mater. Today 36, 139–157. doi: 10.1016/j.mattod.2020.01.018. Wang, 2017, J. Am. Chem. Soc., 139, 14257, 10.1021/jacs.7b07904 Han, 2019, Nat. Energy, 4, 187, 10.1038/s41560-018-0312-z Wenzel, 2016, Chem. Mater., 28, 2400, 10.1021/acs.chemmater.6b00610 Hartmann, 2013, J. Phys. Chem. C, 117, 21064, 10.1021/jp4051275 Wenzel, 2015, Solid State Ionics, 278, 98, 10.1016/j.ssi.2015.06.001 Yamamoto, 2010, Angew. Chem. Int. Ed., 49, 4414, 10.1002/anie.200907319 Li, 2018, J. Am. Chem. Soc., 140, 6448, 10.1021/jacs.8b03106 Wang, 2018, J. Am. Chem. Soc., 140, 250, 10.1021/jacs.7b09531 Fu, 2017, Angew. Chem. Int. Ed., 56, 14942, 10.1002/anie.201708637 Takeuchi, 2010, J. Electrochem. Soc., 157, A1196, 10.1149/1.3486083 Zhu, 2016, J. Mater. Chem. A, 4, 3253, 10.1039/C5TA08574H Urban, 2016, NPG Comput. Mater., 2, 16002, 10.1038/npjcompumats.2016.2