Solid-state lithium batteries: Safety and prospects

eScience - Tập 2 Số 2 - Trang 138-163 - 2022
Yong Guo1, Shichao Wu2,3,4,1, Yan‐Bing He5, Feiyu Kang5, Liquan Chen6, Hong Li6, Quan‐Hong Yang2,3,1
1Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
3Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
4Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
5Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
6Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Monroe, 2004, The effect of interfacial deformation on electrodeposition kinetics, J. Electrochem. Soc., 151, A880, 10.1149/1.1710893

Monroe, 2005, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 152, A396, 10.1149/1.1850854

Song, 2022, Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries, Mater. Today Energy, 23, 100893, 10.1016/j.mtener.2021.100893

Shaji, 2022, Multisalt chemistry in ion transport and interface of lithium metal polymer batteries, Energy Stor. Mater., 44, 263

Zhu, 2021, Strategies to boost ionic conductivity and interface compatibility of inorganic - organic solid composite electrolytes, Energy Stor. Mater., 36, 291

Liu, 2021, Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries, SmartMat, 2, 488, 10.1002/smm2.1064

Zhao, 2021, Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries, eScience, 1, 44, 10.1016/j.esci.2021.08.001

1984

Yu, 1997, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride, J. Electrochem. Soc., 144, 524, 10.1149/1.1837443

Xu, 2004, Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (x=0-1.0), Solid State Ion., 171, 207, 10.1016/j.ssi.2004.05.009

Birke, 1999, A first approach to a monolithic all solid state inorganic lithium battery, Solid State Ion., 118, 149, 10.1016/S0167-2738(98)00462-7

Saffirio, 2022, Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: unravelling the effect of diboron trioxide, J. Eur. Ceram. Soc., 42, 1023, 10.1016/j.jeurceramsoc.2021.11.014

Hyooma, 1988, Crystal structures of La3Li5M2O12 (M=Nb, Ta), Mater. Res. Bull., 23, 1399, 10.1016/0025-5408(88)90264-4

Thangadurai, 2003, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta), J. Am. Ceram. Soc., 86, 437, 10.1111/j.1151-2916.2003.tb03318.x

Thangadurai, 2005, Li6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction, Adv. Funct. Mater., 15, 107, 10.1002/adfm.200400044

Murugan, 2007, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem. Int. Ed., 46, 7778, 10.1002/anie.200701144

Inaguma, 1993, High ionic conductivity in lithium lanthanum titanate, Solid State Commun., 86, 689, 10.1016/0038-1098(93)90841-A

Xu, 2004, High lithium conductivity in Li1.3Cr0.3Ge1.7(PO4)3 glass-ceramics, Mater. Lett., 58, 3428, 10.1016/j.matlet.2004.05.080

Zhao, 2012, Superionic conductivity in lithium-rich anti-perovskites, J. Am. Chem. Soc., 134, 15042, 10.1021/ja305709z

Kanno, 2001, Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system, J. Electrochem. Soc., 148, A742, 10.1149/1.1379028

Mayer, 2022, Block copolymers as (single-ion conducting) lithium battery electrolytes, Nanotechnology, 33, 10.1088/1361-6528/ac2e21

Deiseroth, 2008, Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed., 47, 755, 10.1002/anie.200703900

Xu, 2021, Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes, Energy Environ. Mater., 12282

van den Broek, 2016, Interface-Engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors, Adv. Energy Mater., 6, 1600736, 10.1002/aenm.201600736

Tao, 2017, Solid-state lithium sulfur batteries operated at 37 degrees C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer, Nano Lett., 17, 2967, 10.1021/acs.nanolett.7b00221

Kitaura, 2012, Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode, Energy Environ. Sci., 5, 9077, 10.1039/c2ee22381c

Kitaura, 2012, Electrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode, Adv. Energy Mater., 2, 889, 10.1002/aenm.201100789

Zhang, 2018, New horizons for inorganic solid state ion conductors, Energy Environ. Sci., 11, 1945, 10.1039/C8EE01053F

Ho, 2018, Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries, Adv. Energy Mater., 8, 1800035, 10.1002/aenm.201800035

Fan, 2018, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8, 1702657, 10.1002/aenm.201702657

Balaish, 2021, Processing thin but robust electrolytes for solid-state batteries, Nat. Energy, 6, 227, 10.1038/s41560-020-00759-5

Yang, 2020, Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries, Energy Environ. Sci., 14, 643, 10.1039/D0EE02714F

Huang, 2020, Manufacturing scalability implications of materials choice in inorganic solid-state batteries, Joule, 5, 564, 10.1016/j.joule.2020.12.001

Wu, 2021, Progress in thermal stability of all-solid-state-Li-ion-batteries, InfoMat, 3, 827, 10.1002/inf2.12224

Meesala, 2017, Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries, ACS Energy Lett., 2, 2734, 10.1021/acsenergylett.7b00849

Culver, 2018, Designing ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries, Chem. Mater., 30, 4179, 10.1021/acs.chemmater.8b01293

Gao, 2018, Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries, Adv. Mater., 30, 1705702, 10.1002/adma.201705702

Jena, 2018, Ameliorating the interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications, ACS Energy Lett., 3, 2775, 10.1021/acsenergylett.8b01564

Takada, 2018, Positive and negative aspects of interfaces in solid-state batteries, ACS Energy Lett., 3, 98, 10.1021/acsenergylett.7b01105

Yue, 2018, Progress of the interface design in all-solid-state Li–S batteries, Adv. Funct. Mater., 28, 1707533, 10.1002/adfm.201707533

Xu, 2018, Interfaces in solid-state lithium batteries, Joule, 2, 1991, 10.1016/j.joule.2018.07.009

Kim, 2020, Solid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater., 11, 2002689, 10.1002/aenm.202002689

Chen, 2019, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces, Chem. Rev., 120, 6820, 10.1021/acs.chemrev.9b00268

Judez, 2018, Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges, J. Electrochem. Soc., 165, A6008, 10.1149/2.0041801jes

Albertus, 2021, Challenges for and pathways toward Li-Metal-Based all-solid-state batteries, ACS Energy Lett., 1399, 10.1021/acsenergylett.1c00445

Inoue, 2017, Are all-solid-state lithium-ion batteries really safe?-verification by differential scanning calorimetry with an all-inclusive microcell, ACS Appl. Mater. Interfaces, 9, 1507, 10.1021/acsami.6b13224

Bartsch, 2018, Gas evolution in all-solid-state battery cells, ACS Energy Lett., 3, 2539, 10.1021/acsenergylett.8b01457

Chung, 2017, Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell, Chem. Mater., 29, 8611, 10.1021/acs.chemmater.7b02301

Chen, 2020, The thermal stability of lithium solid electrolytes with metallic lithium, Joule, 4, 812, 10.1016/j.joule.2020.03.012

Feng, 2020, Mitigating thermal runaway of lithium-ion batteries, Joule, 4, 743, 10.1016/j.joule.2020.02.010

Thangadurai, 2014, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43, 4714, 10.1039/c4cs00020j

Saranya, 2012, Li7-xLa3Sn2-xNbxO12 (x=0.25-1) cubic lithium garnet, Mater. Lett., 77, 57, 10.1016/j.matlet.2012.03.002

Kotobuki, 2017, Improvement of Li ion conductivity of Li5La3Ta2O12 solid electrolyte by substitution of Ge for Ta, J. Power Sources, 349, 105, 10.1016/j.jpowsour.2017.03.032

Peng, 2017, Effect of Ge substitution for Nb on Li ion conductivity of Li5La3Nb2O12 solid state electrolyte, Electrochim. Acta, 251, 482, 10.1016/j.electacta.2017.08.136

Awaka, 2011, Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12, Chem. Lett., 40, 60, 10.1246/cl.2011.60

Awaka, 2009, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, J. Solid State Chem., 182, 2046, 10.1016/j.jssc.2009.05.020

Jalem, 2013, Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12, Chem. Mater., 25, 425, 10.1021/cm303542x

Meier, 2014, Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations, J. Phys. Chem. C, 118, 6668, 10.1021/jp5002463

Klenk, 2015, Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O7, Phys. Chem. Chem. Phys., 17, 8758, 10.1039/C4CP05690F

Uddin, 2018, Reassessing the bulk ionic conductivity of solid-state electrolytes, Sustain. Energy Fuels, 2, 1458, 10.1039/C8SE00139A

Murayama, 2002, Structure of the thio-LISICON, Li4GeS4, Solid State Ion., 154–155, 789, 10.1016/S0167-2738(02)00492-7

Zhou, 2019, Solvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4, 265, 10.1021/acsenergylett.8b01997

Buschmann, 2011, Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”, Phys. Chem. Chem. Phys., 13, 19378, 10.1039/c1cp22108f

Li, 2012, Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12, J. Power Sources, 209, 278, 10.1016/j.jpowsour.2012.02.100

Bernuy-Lopez, 2014, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics, Chem. Mater., 26, 3610, 10.1021/cm5008069

Wagner, 2016, Crystal structure of garnet-related Li-ion conductor Li7-3xGaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification?, Chem. Mater., 28, 1861, 10.1021/acs.chemmater.6b00038

Deviannapoorani, 2013, Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets, J. Power Sources, 240, 18, 10.1016/j.jpowsour.2013.03.166

Li, 2015, W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries, Electrochim. Acta, 180, 37, 10.1016/j.electacta.2015.08.046

Shao, 2017, Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte, Electrochim. Acta, 225, 345, 10.1016/j.electacta.2016.12.140

Song, 2018, Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries, Electrochim. Acta, 270, 501, 10.1016/j.electacta.2018.03.101

Wang, 2018, High lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2-xSmxO12 (x=0-0.1) ceramics, Mater. Lett., 231, 43, 10.1016/j.matlet.2018.08.006

Ramakumar, 2013, Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors, Phys. Chem. Chem. Phys., 15, 11327, 10.1039/c3cp50991e

Li, 2012, Optimizing Li+ conductivity in a garnet framework, J. Mater. Chem., 22, 15357, 10.1039/c2jm31413d

Ohta, 2011, High lithium ionic conductivity in the garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x=0–2), J. Power Sources, 196, 3342, 10.1016/j.jpowsour.2010.11.089

Buannic, 2017, Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte, Chem. Mater., 29, 1769, 10.1021/acs.chemmater.6b05369

Rangasamy, 2013, The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte, J. Power Sources, 230, 261, 10.1016/j.jpowsour.2012.12.076

Huang, 2014, X-ray absorption near-edge spectroscopy study on Ge-doped Li7La3Zr2O12: enhanced ionic conductivity and defect chemistry, Electrochim. Acta, 115, 581, 10.1016/j.electacta.2013.11.020

Wu, 2017, Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries, ACS Appl. Mater. Interfaces, 9, 12461, 10.1021/acsami.7b00614

Chen, 2018, Improved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method, Solid State Ion., 314, 92, 10.1016/j.ssi.2017.11.027

Kraft, 2017, Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I), J. Am. Chem. Soc., 139, 10909, 10.1021/jacs.7b06327

Mori, 2013, Visualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass–ceramic, Chem. Phys. Lett., 584, 113, 10.1016/j.cplett.2013.08.016

Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066

Mizuno, 2005, New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses, Adv. Mater., 17, 918, 10.1002/adma.200401286

Seino, 2014, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci., 7, 627, 10.1039/C3EE41655K

Weber, 2016, Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12, Chem. Mater., 28, 5905, 10.1021/acs.chemmater.6b02424

Basappa, 2017, Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention, J. Electrochem. Soc., 164, A666, 10.1149/2.0841704jes

Ishiguro, 2013, Stability of Nb-doped cubic Li7La3Zr2O12 with lithium metal, J. Electrochem. Soc., 160, A1690, 10.1149/2.036310jes

Ren, 2015, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 57, 27, 10.1016/j.elecom.2015.05.001

Sharafi, 2016, Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, 302, 135, 10.1016/j.jpowsour.2015.10.053

Kazyak, 2020, Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility, Matter, 2, 1025, 10.1016/j.matt.2020.02.008

Cheng, 2017, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 223, 85, 10.1016/j.electacta.2016.12.018

Song, 2019, Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte, Adv. Energy Mater., 9, 1900671, 10.1002/aenm.201900671

Luo, 2016, Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte, J. Am. Chem. Soc., 138, 12258, 10.1021/jacs.6b06777

Fu, 2017, Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Sci. Adv., 3, 10.1126/sciadv.1601659

Fu, 2017, Transient behavior of the metal interface in Li metal-garnet batteries, Angew. Chem. Int. Ed., 56, 14942, 10.1002/anie.201708637

Han, 2017, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16, 572, 10.1038/nmat4821

Luo, 2017, Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer, Adv. Mater., 29, 1606042, 10.1002/adma.201606042

Wang, 2017, Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett., 17, 565, 10.1021/acs.nanolett.6b04695

Wang, 2017, Universal soldering of lithium and sodium alloys on various substrates for batteries, Adv. Energy Mater., 8, 1701963, 10.1002/aenm.201701963

Dai, 2018, Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization, Adv. Mater., 30, 1802068, 10.1002/adma.201802068

Porz, 2017, Mechanism of lithium metal penetration through inorganic solid electrolytes, Adv. Energy Mater., 7, 1701003, 10.1002/aenm.201701003

Krauskopf, 2019, Lithium-metal growth kinetics on LLZO garnet-type solid electrolytes, Joule, 3, 2030, 10.1016/j.joule.2019.06.013

Yang, 2021, Interfacial defect of lithium metal in solid-state batteries, Angew. Chem. Int. Ed., 60, 21494, 10.1002/anie.202108144

Kim, 2020, The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte, Adv. Energy Mater., 10, 1903993, 10.1002/aenm.201903993

Tian, 2018, Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites, J. Power Sources, 392, 79, 10.1016/j.jpowsour.2018.04.098

Sharafi, 2017, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte, J. Mater. Chem., 5, 21491, 10.1039/C7TA06790A

Huo, 2019, Li2CO3: a critical issue for developing solid garnet batteries, ACS Energy Lett., 5, 252, 10.1021/acsenergylett.9b02401

Han, 2019, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy, 4, 187, 10.1038/s41560-018-0312-z

Wang, 2019, A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte, Energy Stor. Mater., 17, 234

Ping, 2020, Reversible short-circuit behaviors in garnet-based solid-state batteries, Adv. Energy Mater., 10, 2000702, 10.1002/aenm.202000702

Yonemoto, 2017, Temperature effects on cycling stability of Li plating/stripping on Tadoped Li7La3Zr2O12, J. Power Sources, 343, 207, 10.1016/j.jpowsour.2017.01.009

Nagao, 2013, In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte, Phys. Chem. Chem. Phys., 15, 18600, 10.1039/c3cp51059j

Sun, 2021, Visualizing lithium dendrite formation within solid-state electrolytes, ACS Energy Lett., 6, 451, 10.1021/acsenergylett.0c02314

Ning, 2021, Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells, Nat. Mater., 20, 1121, 10.1038/s41563-021-00967-8

Jiang, 2020, Nonuniform ionic and electronic transport of ceramic and polymer/ceramic hybrid electrolyte by nanometer-scale operando imaging for solid-state battery, Adv. Energy Mater., 10, 2000219, 10.1002/aenm.202000219

Han, 2018, Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation, Adv. Energy Mater., 8, 1703644, 10.1002/aenm.201703644

Kasemchainan, 2019, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Nat. Mater., 18, 1105, 10.1038/s41563-019-0438-9

Yang, 2021, Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries, Adv. Mater., 11, 2008081, 10.1002/adma.202008081

Qi, 2020, A new general paradigm for understanding and preventing Li metal penetration through solid electrolytes, Joule, 4, 2599, 10.1016/j.joule.2020.10.009

Krauskopf, 2020, Physicochemical concepts of the lithium metal anode in solid-state batteries, Chem. Rev., 120, 7745, 10.1021/acs.chemrev.0c00431

Wang, 2020, Creep-enabled 3D solid-state lithium-metal battery, Inside Chem., 6, 2878

Masias, 2019, Elastic, plastic, and creep mechanical properties of lithium metal, J. Mater. Sci., 54, 2585, 10.1007/s10853-018-2971-3

Meng, 2020, Li2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting, Nat. Commun., 11, 3716, 10.1038/s41467-020-17493-x

Huo, 2021, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries, Nat. Commun., 12, 176, 10.1038/s41467-020-20463-y

Wang, 2019, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy, 55, 93, 10.1016/j.nanoen.2018.10.035

Kotobuki, 2010, Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode, J. Electrochem. Soc., 157, A1076, 10.1149/1.3474232

Kotobuki, 2011, Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte, J. Power Sources, 196, 7750, 10.1016/j.jpowsour.2011.04.047

Ohta, 2012, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte, J. Power Sources, 202, 332, 10.1016/j.jpowsour.2011.10.064

Ma, 2016, Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy, Nano Lett., 16, 7030, 10.1021/acs.nanolett.6b03223

Han, 2016, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 6, 1501590, 10.1002/aenm.201501590

Kim, 2011, Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery, J. Power Sources, 196, 764, 10.1016/j.jpowsour.2010.07.073

Kato, 2014, In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 260, 292, 10.1016/j.jpowsour.2014.02.102

Truong, 2011, Soft-Chemistry of garnet-type Li5+xBaxLa3–xNb2O12 (x = 0, 0.5, 1): reversible H+ ↔ Li+ ion-exchange reaction and their X-ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization, Chem. Mater., 23, 3970, 10.1021/cm2015127

Nyman, 2010, Alternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes, Chem. Mater., 22, 5401, 10.1021/cm101438x

Shimonishi, 2011, Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions, Solid State Ion., 183, 48, 10.1016/j.ssi.2010.12.010

Brugge, 2018, Garnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics, Chem. Mater., 30, 3704, 10.1021/acs.chemmater.8b00486

Jin, 2013, Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery, J. Power Sources, 239, 326, 10.1016/j.jpowsour.2013.03.155

Sharafi, 2017, Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance, J. Mater. Chem., 5, 13475, 10.1039/C7TA03162A

Orera, 2016, Influence of Li+ and H+ distribution on the crystal structure of Li7–xHxLa3Zr2O12 (0 ≤ x ≤ 5) garnets, Inorg. Chem., 55, 1324, 10.1021/acs.inorgchem.5b02708

Cheng, 2015, Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes, ACS Appl. Mater. Interfaces, 7, 17649, 10.1021/acsami.5b02528

Xia, 2016, Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles, ACS Appl. Mater. Interfaces, 8, 5335, 10.1021/acsami.5b12186

Liu, 2013, Anomalous high ionic conductivity of nanoporous β-Li3PS4, J. Am. Chem. Soc., 135, 975, 10.1021/ja3110895

Xu, 2016, Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries, Electrochim. Acta, 219, 235, 10.1016/j.electacta.2016.09.155

Rangasamy, 2015, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc., 137, 1384, 10.1021/ja508723m

Kobayashi, 2008, Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON, Electrochim. Acta, 53, 5045, 10.1016/j.electacta.2008.01.071

Cheng, 2017, Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface, ACS Energy Lett., 2, 1454, 10.1021/acsenergylett.7b00319

Wenzel, 2018, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes, Solid State Ion., 318, 102, 10.1016/j.ssi.2017.07.005

Wood, 2018, Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes, Nat. Commun., 9, 2490, 10.1038/s41467-018-04762-z

Wenzel, 2016, Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte, Solid State Ion., 286, 24, 10.1016/j.ssi.2015.11.034

Han, 2015, A battery made from a single material, Adv. Mater., 27, 3473, 10.1002/adma.201500180

Swamy, 2019, Electrochemical redox behavior of Li-ion conducting sulfide solid electrolytes, Chem. Mater., 31, 707, 10.1021/acs.chemmater.8b03420

Tan, 2019, Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte, ACS Energy Lett., 4, 2418, 10.1021/acsenergylett.9b01693

Schwietert, 2020, Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes, Nat. Mater., 19, 428, 10.1038/s41563-019-0576-0

Deng, 2017, Data-driven first-principles methods for the study and design of alkali superionic conductors, Chem. Mater., 29, 281, 10.1021/acs.chemmater.6b02648

Sakuda, 2010, Intefacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater., 22, 949, 10.1021/cm901819c

Richards, 2016, Interface stability in solid-state batteries, Chem. Mater., 28, 266, 10.1021/acs.chemmater.5b04082

Zhang, 2017, The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries, ACS Appl. Mater. Interfaces, 9, 35888, 10.1021/acsami.7b11530

Oh, 2016, Bulk-type All solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte, Chem. Mater., 28, 2634, 10.1021/acs.chemmater.5b04940

Zhu, 2015, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7, 23685, 10.1021/acsami.5b07517

Banerjee, 2020, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes, Chem. Rev., 120, 6878, 10.1021/acs.chemrev.0c00101

Haruyama, 2014, Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery, Chem. Mater., 26, 4248, 10.1021/cm5016959

Ohta, 2006, Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater., 18, 2226, 10.1002/adma.200502604

Takada, 2008, Interfacial modification for high-power solid-state lithium batteries, Solid State Ion., 179, 1333, 10.1016/j.ssi.2008.02.017

Takada, 2012, Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte, Solid State Ion., 225, 594, 10.1016/j.ssi.2012.01.009

Chen, 2015, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes, Phys. Chem. Chem. Phys., 17, 16494, 10.1039/C5CP01841B

Muramatsu, 2011, Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ion., 182, 116, 10.1016/j.ssi.2010.10.013

Ohtomo, 2013, Characteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling, J. Non-Cryst. Solids, 364, 57, 10.1016/j.jnoncrysol.2012.12.044

Hayashi, 2013, Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles, J. Mater. Chem., 1, 6320, 10.1039/c3ta10247e

Ohtomo, 2013, Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives, J. Mater. Sci., 48, 4137, 10.1007/s10853-013-7226-8

Pearson, 1963, Hard and soft acids and bases, J. Am. Chem. Soc., 85, 3533, 10.1021/ja00905a001

Choi, 2017, Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries, ChemSusChem, 10, 2605, 10.1002/cssc.201700409

Han, 2018, Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation, Adv. Energy Mater., 8, 1703644, 10.1002/aenm.201703644

Lu, 2021, Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity, Adv. Mater., 33, 2100921, 10.1002/adma.202100921

Shishvan, 2020, Dendrites as climbing dislocations in ceramic electrolytes: initiation of growth, J. Power Sources, 456, 227989, 10.1016/j.jpowsour.2020.227989

Shishvan, 2020, Growth rate of lithium filaments in ceramic electrolytes, Acta Mater., 196, 444, 10.1016/j.actamat.2020.06.060

Yuan, 2021, Unlocking the electrochemical–mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries, Adv. Energy Mater., 11, 2101807, 10.1002/aenm.202101807

Deng, 2016, Elastic properties of alkali superionic conductor electrolytes from first principles calculations, J. Electrochem. Soc., 163, A67, 10.1149/2.0061602jes

Ni, 2012, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet, J. Mater. Sci., 47, 7978, 10.1007/s10853-012-6687-5

Wolfenstine, 2013, A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors, Mater. Lett., 96, 117, 10.1016/j.matlet.2013.01.021

Yu, 2016, Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 28, 197, 10.1021/acs.chemmater.5b03854

Sakuda, 2013, Evaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test, J. Ceram. Soc. Jpn., 121, 946, 10.2109/jcersj2.121.946

Sakuda, 2013, Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery, Sci. Rep., 3, 2261, 10.1038/srep02261

McGrogan, 2017, Compliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte, Adv. Energy Mater., 7, 1602011, 10.1002/aenm.201602011

Kato, 2018, Mechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries, ACS Appl. Energy Mater., 1, 1002, 10.1021/acsaem.7b00140

Baranowski, 2016, Multi-scale mechanical behavior of the Li3PS4 solid-phase electrolyte, ACS Appl. Mater. Interfaces, 8, 29573, 10.1021/acsami.6b06612

Swallow, 2014, Effect of electrochemical charging on elastoplastic properties and fracture toughness of LiXCoO2, J. Electrochem. Soc., 161, F3084, 10.1149/2.0141411jes

Samsonov, 1968, Mechanical properties of the elements, 387

Matsui, 2013, Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12, Dalton Trans., 43, 1019, 10.1039/C3DT52024B

Park, 2016, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 28, 8051, 10.1021/acs.chemmater.6b03870

Zhang, 2018, Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials, ACS Appl. Energy Mater., 1, 5968, 10.1021/acsaem.8b01035

Miara, 2016, About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature, ACS Appl. Mater. Interfaces, 8, 26842, 10.1021/acsami.6b09059

Chen, 2015, Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor, Appl. Phys. Lett., 107

Tsukasaki, 2017, Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries, J. Power Sources, 367, 42, 10.1016/j.jpowsour.2017.09.031

Fan, 2019, All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents, Nat. Energy, 4, 882, 10.1038/s41560-019-0474-3

Uyama, 2018, Realizing the ultimate thermal stability of a lithium-ion battery using two zero-strain insertion materials, ACS Appl. Energy Mater., 1, 5712

Strauss, 2020, Gas evolution in lithium-ion batteries: solid versus liquid electrolyte, ACS Appl. Mater. Interfaces, 12, 20462, 10.1021/acsami.0c02872

Yamada, 2013, Safety of high capacity all solid state Li-ion secondary battery, Meet. Abstr., MA2013–01

Yonglong, 2018, Brief analysis the safety of solid-state lithium ion batteries, Energy Stor. Sci. Technol., 7, 994

Wang, 2015, Design principles for solid-state lithium superionic conductors, Nat. Mater., 14, 1026, 10.1038/nmat4369

Bachman, 2016, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev., 116, 140, 10.1021/acs.chemrev.5b00563

Kato, 2016, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1, 16030, 10.1038/nenergy.2016.30

Tan, 2021, Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes, Science, 373, 1494, 10.1126/science.abg7217

Zhao, 2016, A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries, J. Power Sources, 301, 47, 10.1016/j.jpowsour.2015.09.111

Chinnam, 2017, Engineered interfaces in hybrid ceramic–polymer electrolytes for use in all-solid-state Li batteries, ACS Energy Lett., 2, 134, 10.1021/acsenergylett.6b00609

Zhang, 2017, Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes, J. Am. Chem. Soc., 139, 13779, 10.1021/jacs.7b06364

Feng, 2010, Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3, J. Alloys Compd., 501, 255, 10.1016/j.jallcom.2010.04.084

Wang, 2020, Mixed electronic and ionic conduction properties of lithium lanthanum titanate, Adv. Funct. Mater., 30, 1909140, 10.1002/adfm.201909140

Kotobuki, 2010, Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery, J. Power Sources, 195, 5784, 10.1016/j.jpowsour.2010.03.004

Yamamoto, 2010, Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery, Angew. Chem. Int. Ed., 49, 4414, 10.1002/anie.200907319

Lewis, 2019, Interphase morphology between a solid-state electrolyte and lithium controls cell failure, ACS Energy Lett., 4, 591, 10.1021/acsenergylett.9b00093

Tippens, 2019, Visualizing chemomechanical degradation of a solid-state battery electrolyte, ACS Energy Lett., 4, 1475, 10.1021/acsenergylett.9b00816