Solid-state NMR studies of magnetically aligned phospholipid membranes: taming lanthanides for membrane protein studies

Biochemistry and Cell Biology - Tập 76 Số 2-3 - Trang 443-451 - 1998
R. Scott Prosser, V. B. Volkov, Irina Shiyanovskaya

Tóm tắt

The addition of lanthanides (Tm3+, Yb3+, Er3+, or Eu3+) to a solution of long-chain phospholipids such as dimyristoylphosphatidylcholine (DMPC) and short-chain phospholipids such as dihexanoylphosphatidylcholine (DHPC) is known to result in a bilayer phase in which the average bilayer normal aligns parallel to an applied magnetic field. Lanthanide-doped bilayers have enormous potential for the study of membrane proteins by solid-state NMR, low-angle diffraction, and a variety of optical spectroscopic techniques. However, the addition of lanthanides poses certain challenges to the NMR spectroscopist: coexistence of an isotropic phase and hysteresis effects, direct binding of the paramagnetic ion to the peptide or protein of interest, and severe paramagnetic shifts and line broadening. Lower water concentrations and larger DMPC/DHPC ratios than those typically used in bicelles consistently yield a single oriented bilayer phase that is stable over a wide range of temperature (~35-90°C). Among the above choice of lanthanides, Yb3+ is found to give minimal paramagnetic shifts and line broadening at acceptably low concentrations necessary for alignment (i.e., Yb3+/DMPC mole ratios equal to or greater than 0.01). Finally, the addition of a phospholipid chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine - diethylenetriaminepentaacetic acid, is observed to significantly reduce paramagnetic broadening and presumably prevent direct association of the peptide with the lanthanide ions.Key words: lanthanide, solid-state NMR, model membrane, membrane protein structure.

Từ khóa


Tài liệu tham khảo