Solid-state NMR sequential assignment of an Amyloid-β(1–42) fibril polymorph

Biomolecular NMR Assignments - Tập 10 Số 2 - Trang 269-276 - 2016
Francesco Ravotti1, Marielle A. Wälti1, Peter Güntert2, Roland Riek3, Anja Böckmann4, Beat H. Meier3
1Physical Chemistry, ETH Zürich, Zürich, Switzerland
2Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
3Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
4Institut de Biologie et Chemie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bertini I, Gonnelli L, Luchinat C et al (2011) A new structural model of Aβ40 fibrils. J Am Chem Soc 133:16013–16022. doi: 10.1021/ja2035859

Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327. doi: 10.1007/s10858-009-9374-3

Colvin MT, Silvers R, Frohm B et al (2015) High resolution structural characterization of Aβ 42Amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 137:7509–7518. doi: 10.1021/jacs.5b03997

Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multi-dimensional NMR data with the new software PROSA. J Biomol NMR 2:619–629. doi: 10.1007/BF02192850

Habenstein B, Wasmer C, Bousset L et al (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51:235–243. doi: 10.1007/s10858-011-9530-4

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi: 10.1126/science.1072994

Huber M, Ovchinnikova OY, Schütz AK et al (2015) Solid-state NMR sequential assignment of Osaka-mutant amyloid-beta (Aβ1-40 E22Δ) fibrils. Biomol NMR Assign 9:7–14. doi: 10.1007/s12104-013-9535-x

Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller B (1987) The precursor of alzheimer’s disease amyloid a4 protein resembles a cell-surface receptor. Nature 325:733–736. doi: 10.1038/325733a0

Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of beta-amyloid fibrils in alzheimer’s disease brain tissue. Cell 154:1257–1268. doi: 10.1016/j.cell.2013.08.035

Masters CL, Simms G, Weinmann NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in alzheimer disease and down syndrome. Proc Natl Acad Sci USA 82:4245–4249. doi: 10.1097/00005072-198505000-00178

Meier BH, Böckmann A (2015) The structure of fibrils from “misfolded” proteins. Curr Opin Struct Biol 30:43–49. doi: 10.1016/j.sbi.2014.12.001

Mithu VS, Sarkar B, Bhowmik D, et al (2011) Zn(++) binding disrupts the Asp(23)-Lys(28) salt bridge without altering the hairpin-shaped cross-β Structure of Aβ(42) amyloid aggregates. Biophys J 101:2825–2832. doi: 10.1016/j.bpj.2011.10.023

Ovchinnikova OY, Finder VH, Vodopivec I, Nitsch RM, Glockshuber R (2011) The osaka FAD mutation E22Δ leads to the formation of a previously unknown type of amyloid β fibrils and modulates Aβ neurotoxicity. J Mol Biol 408:780–791. doi: 10.1016/j.jmb.2011.02.049

Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in alzheimer’s beta-amyloid fibrils. P Natl Acad Sci USA 105:18349–18354. doi: 10.1073/pnas.0806270105

Schuetz A, Wasmer C, Habenstein B et al (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: hET-s(1-227). ChemBioChem 11:1543–1551. doi: 10.1002/cbic.201000124

Schütz AK, Vagt T, Huber M et al (2015) Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the osaka mutation. Angew Chem Int Ed Engl 54:331–335. doi: 10.1002/anie.201408598

Selkoe DJ (1991) The molecular pathology of alzheimer’s disease. Neuron 6:487–498. doi: 10.1016/0896-273(91)90052-2

Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447. doi: 10.3349/ymj.2014.55.3.689

Stevens TJ, Fogh RH, Boucher W et al (2011) A software framework for analysing solid-state MAS NMR data. J Biomol NMR 51:437–447. doi: 10.1007/s10858-011-9569-2

Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. doi: 10.1002/prot.20449

Wälti MA, Orts J, Vögeli B et al (2015) Solution NMR studies of recombinant Aβ(1-42): from the presence of a micellar entity to residual β-sheet structure in the soluble species. ChemBioChem 16:659–669. doi: 10.1002/cbic.201402595

Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861

Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180. doi: 10.1007/BF00175245

Xiao Y, Ma B, McElheny D et al (2015) Aβ 1-42 fibril structure illuminates self-recognition and replication of amyloid in alzheimer’s disease. Nat Struct Mol Biol 22:1–9. doi: 10.1038/nsmb.2991