Solid Phase Synthesis of Dual Labeled Peptides: Development of Cell Permeable Calpain Specific Substrates
Tóm tắt
A step-by-step evaluation of dual-labeled FRET substrates for the protease calpain is reported. The study led to cell permeable selections, with optimized specificity and effectiveness for the target enzyme, and improved stability to non-specific degrading enzymes.
Tài liệu tham khảo
Biancalana S., Hudson D., Songster M. F., Thompson S. A. (2001) Lett. Peptide Sci. 7:291–297
Carpino, L. A., El-Faham, A., Truran, G. A., Minor, C. A., Kates, S. A., Griffin, G. W., Shroff, H., Triolo, S. A., and Albericio, F.: 1994, in: R. Epton (ed.), Innovations and Perspectives in Solid-Phase Synthesis, Proceedings of the Third International Symposium, Mayflower Pubs, Oxford, pp. 95–104
Carter, T. G., Cook, R. M., Hudson, D., Johansson, M. K., Lyttle, M. H., Reddington, M. and Walton, T.: 2004, in R. Epton (ed.), Innovations and Perspectives in Solid-Phase Synthesis, Proceedings of the Eighth International Symposium, Mayflower Pubs., London, pp. 103–106
Cook R. M., Adams J. H., Hudson D. (1994) Tetrahedron Lett. 35:6777–6780
Cook, R. M., Lyttle, M. and Dick, D.: 2006, US Patent US 7,019,129 B1
Crocker S. J., Smith P. D., Jackson-Lewis V., Lamba W. R., Hayley S. P., Grimm E., Callaghan S. M., Slack R. S., Melloni E., Przedborski S., Robertson G. S., Anisman H., Merali Z., Park D. S. (2003) J. Neurosci. 23:4081–4091
Cuerrier D., Moldoveanu T., Davies P. L. (2005) J. Biol. Chem. 280:40632–40641
Fischer S., Vandekerckhove J., Ampe C., Traub P., Weber K. (1986) Biol. Chem. Hoppe Seyler 367:1147–1152
Gafni J., Ellerby L. M. (2002) J. Neurosci. 22:4842–4849
Goll D. E., Thompson V. F., Li H., Wei W., Cong J. (2003) Physiol. Rev. 83: 731–801
Hamill P., Hudson D., Kao R. Y., Chow P., Raj M., Xu H., Richler M. J., Jean F. (2006) Biol. Chem. 387:1063–1074
Johanssen M. K., Cook R. M. (2003) Chem. Eur. J. 9:3466
Johanssen M. K., Fidder H., Dick D., Cook R. M. (2002) J. Am. Chem. Soc. 124:6950
Kakkar R., Raju R. V., Sharma R. K. (1998) Arch. Biochem. Biophys. 358:320–328
Lankiewicz S., Marc L. C., Truc B. N., Krohn A. J., Poppe M., Cole G. M., Saido T. C., Prehn J. H. (2000) J. Biol. Chem. 275:17064–17071
Markgraf C. G., Velayo N. L., Johnson M. P., McCarty D. R., Medhi S., Koehl J. R., Chmielewski P. A., Linnik M. D. (1998) Stroke 29:152–158
Merrifield R. B. (1963) J. Am. Chem. Soc. 85:2149
Mittoo S., Sundstrom L. E., Bradley M. (2003) Anal. Biochem. 319:234–238
Reddington, M. and Lyttle, M.: 2005, US Patent Application US 2005/0170363 A1
Rose K., Vizzavona J. (1999) J. Am. Chem. Soc. 121:7034–7038
Saito K., Elce J. S., Hamos J. E., Nixon R. A. (1993) Proc. Natl. Acad. Sci. USA 90:2628–2632
Tan Y., Wu C., De V. T., Greer P. A. (2006) J. Biol. Chem. 281:17689–17698
Thomas D. A., Francis P., Smith C., Ratcliffe S., Ede N. J., Kay C., Wayne G., Martin S. L., Moore K., Amour A., Hooper N. M. (2006) Proteomics 6:2112–2120
Tompa P., Buzder-Lantos P., Tantos A., Farkas A., Szilagyi A., Banoczi Z., Hudecz F., Friedrich P. (2004) J. Biol. Chem. 279:20775–20785
Vives E., Granier C., Prevot P., Lebleu B. (1997) Lett. Peptide Sci. 4:429–436