Solid Electrolyte Layers by Solution Deposition

Advanced Materials Interfaces - Tập 5 Số 8 - 2018
Hee‐Dae Lim1, Hyung‐Kyu Lim2, Xing Xing1, Byoung‐Sun Lee1, Ping Liu1, Christopher Coaty1, Hyungjun Kim2
1Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093 USA
2Graduate School of Energy Environment Water Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea

Tóm tắt

AbstractSolid state batteries hold the promise of enhanced safety and higher energy density over conventional lithium‐ion batteries with flammable organic electrolytes. However, advancement of solid electrolyte materials has yet to translate into practical batteries due to the need to process the powders into thin sheets with high pressure compaction and high temperature sintering. Here, a new strategy is developed for synthesizing sulfide‐based solid electrolyte using low‐temperature solution processing, which is a simple and potentially cost‐effective way to make a thin solid electrolyte layer. By controlling the stoichiometric ratio of Li2S and S, soluble polysulfides are produced in diethylene glycol dimethyl ether, which are reacted with P2S5 to form a conductive Li3PS4 solid electrolyte. It is demonstrated that a dense solid electrolyte layer can be directly formed on Li metal with a high quality electrolyte/electrode interface, producing a solid electrolyte with promising electrochemical performance. Also, first‐principles calculations are conducted to elucidate the formation mechanisms behind the soluble intermediates and the solid electrolyte layers.

Từ khóa


Tài liệu tham khảo

10.1038/nmat3066

10.1021/cm901819c

10.1038/nmat4369

10.1016/S1388-2481(02)00555-6

10.1002/adma.200401286

10.1038/ncomms1843

10.1149/1.2056487

Hayashi A., 2001, J. Am. Chem. Soc., 84, 477

10.1038/srep02261

10.1021/ja508723m

10.1021/acsami.6b06612

10.1021/acs.nanolett.5b00538

10.1016/j.jpowsour.2010.07.073

10.1016/j.jascer.2013.03.005

10.1016/j.jpowsour.2013.09.117

10.1039/c3ta15090a

10.1016/j.jpowsour.2012.09.097

10.1021/ja3110895

10.1016/j.electacta.2016.09.155

10.1016/j.jpowsour.2014.08.024

10.1016/j.ssi.2015.11.032

10.1016/j.ssi.2015.11.019

10.1246/cl.130726

10.1039/C6TA02294D

10.1016/S0022-4596(03)00138-5

10.1021/cm0217553

10.1002/ange.201300680

10.1021/acs.chemmater.7b00931

10.1021/acs.chemmater.7b00551

10.1007/s10832-017-0084-z

10.1039/C4CP00889H

10.1039/C7CP01238A

10.1002/qua.24481

10.1063/1.464913

10.1103/PhysRevB.37.785

10.1016/0927-0256(96)00008-0

10.1002/jcc.20495