Solar photovoltaic electricity: Current status and future prospects

Solar Energy - Tập 85 Số 8 - Trang 1580-1608 - 2011
T.M. Razykov1,2,3, C.S. Ferekides2, D.L. Morel2, Elias Stefanakos2, H. S. Ullal4, Hari M. Upadhyaya5
143600 Solar Energy Research Institute, UKM, Bangi, Selangor, Malaysia
2Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., ENB 0118 Tampa, FL 33620-5350, USA
3Physical–Technical Institute, Scientific Association “Physics-Sun”, Uzbek Academy of Sciences, G. Mavlyanov Street 2B, Tashkent 700084, Uzbekistan
4National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO 80401 USA
5CREST, Loughborough University, Leicestershire LE11 3TU, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abken, 2002, Sputtered Mo/Sb2Te3 and Ni/Sb2Te3 layers as back contacts for CdTe/CdS solar cells, Thin Solid Films, 403–404, 216, 10.1016/S0040-6090(01)01527-9

Amin, N., Isaka, T., Yamada, A., Konagai, M., 1999. High efficient 1 μm thick CdTe solar cells with textured TCOs. In: Technical Digest of the 11th International Photovoltaic Science and Engineering Conference, Sapporo, Japan, pp. 837–838.

Andreev, V.M., 1994. High efficiency (24.6%, AMO) LPE grown AlGaAs/GaAs concentrator solar cells and modules. In: Proceedings of the First WCPEC, Hawaii, USA, pp. 2096–2099.

Arakawa, 2003, vol. 10, 123

Aramoto, 1997, 16.0% efficient thin-film CdS/CdTe solar cells, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 36, 6304, 10.1143/JJAP.36.6304

Araujo, 1994, Absolute limiting efficiencies for photovoltaic energy conversion, Solar Energy Materials and Solar Cells, 33, 213, 10.1016/0927-0248(94)90209-7

Ashenford, 1995, Investigation of p–i–n solar cell efficiency enhancement by use of MQW structures in the i-region, Journal of Crystal Growth, 159, 920, 10.1016/0022-0248(95)00818-7

Bailey, 1972, A proposed new concept for a solar energy convertor, Journal of Engineering for Power, 94, 73, 10.1115/1.3445660

Barnham, K.W.J., Abbott, P., Ballard, I., Bushnell, D.B., Connolly, J.P., Ekins-Daukes, N.J., Mazzer, M., Nelson, J., Rohr, C., Tibbits, T.N., Airey, R., Hill, G., Roberts, J.S., 2003. Recent results on quantum well solar cells. In: Proc. of the 3rd World Conference on Photovoltaic Energy Conversion, VA, pp. 606–611.

Basore, P.A., 2004. Simplified processing and improved efficiency of crystalline silicon on glass modules. In: 19th European Photovoltaic Solar Energy Conference, Paris, June, pp. 455–458.

Bätzner, 2001, Development of efficient and stable back contacts on CdTe/CdS solar cells, Thin Solid Films, 387, 151, 10.1016/S0040-6090(01)00792-1

Bätzner, 2004, Stability aspects in CdTe–CdS solar cells, Thin Solid Films, 451–452, 536, 10.1016/j.tsf.2003.10.141

Bhattacharya, 2004, Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS, Solar Energy, 77, 679, 10.1016/j.solener.2004.05.009

Britt, 1993, Thin film CdS/CdTe solar cell with 15.8% efficiency, Applied Physics Letters, 62, 2851, 10.1063/1.109629

Brown, 1970, The receiving antenna and microwave power rectification, Journal of Microwave Power, 5, 279, 10.1080/00222739.1970.11688772

Carlson, 1976, Amorphous silicon solar cell, Applied Physics Letters, 28, 671, 10.1063/1.88617

Chaisitsak, S., Yamada, A., Konagai, M., 2001. In: The Proceedings of the Materials Research Society Spring Meeting, San Francisco, p. 668.

Chiang, 1977, Electrical conductivity in doped polyacetylene, Physical Review Letters, 39, 1098, 10.1103/PhysRevLett.39.1098

Compaan, 2004, The status of and challenges in CdTe thin-film solar-cell technology, MRS Symposium Proceedings, 808, 545, 10.1557/PROC-808-A7.6

Corkish, 2002, Solar energy collection by antennas, Solar Energy, 73, 395, 10.1016/S0038-092X(03)00033-1

Cusano, 1963, CdTe solar cells and photovoltaic heterojunctions in II–VI compounds, Solid State Electronics, 6, 217, 10.1016/0038-1101(63)90078-9

De Vos, 1998, On the ideal performance of solar cells with larger-than-unity quantum efficiency, Solar Energy Materials and Solar Cells, 51, 413, 10.1016/S0927-0248(97)00260-2

De Vos, 1981, On the thermodynamic limit of photovoltaic energy conversion, Journal of Applied Physics, 25, 119, 10.1007/BF00901283

Deb, 2005, Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL), Solar Energy Materials & Solar Cells, 88, 1, 10.1016/j.solmat.2004.09.007

Deb, S.K., Chen, S., Witzke, H., 1978. US Patents 4117510, 4080488, 4118246, and 4118247.

Deng, X., Schiff, E.A., 2003. Amorphous silicon–based solar cells. In: Luque, A., Hegedus, S. (Eds.), Handbook of Photovoltaic Science and Engineering. John Wiley & Sons.

Diefenbach, 2005, Wiped away, Photon International, 48

Eberspacher, 2001, Thin-film CIS alloy PV materials fabricated using non-vacuum, particles-based techniques, Thin Solid Films, 387, 18, 10.1016/S0040-6090(00)01729-6

Ebil, O., Aparicio, R., Birkmire, R., 2004. In-situ AIC of Si thin films on glass above the eutectic point using HWCVD. In: MRS Symp. Proc., vol. 808, pp. 321–326.

Ekins-Daukes, N., Bushnell, D., Zhang, J., Barnham, K., Mazzer, M., 2000. Strain-balanced materials for high-efficiency solar cells. In: Proc.28th IEEE PV Specialists Conference, USA, pp. 1273–1276.

Ellingson, 2005, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Letters, 5, 865, 10.1021/nl0502672

Farber, E.A., 1988. Antenna Solar Energy to Electricity Conversion. Report to the Airforce, AF C F08635-83-C-0136, Task 85-6.

Feng, 1996, Correlations between CdTe/CdS/SnO2/glass solar cell performance and the interface/surface properties, Journal of Applied Physics, 79, 2151, 10.1063/1.361041

Fletcher, J.C., Bailey, R.L., 1973. Electromagnetic wave energy converter. US Pat. No. 3760257.

Forrest, 2005, The limits to organic photovoltaic cell efficiency, MRS Bulletin, 30, 28, 10.1557/mrs2005.5

Fthenakis, V., Zweibel, K., 2003. CdTe PV: Real and Perceived EHS Risks. Prepared for the NCPV and Solar Program Review Meeting, March 25, 2003.

Fthenakis, 1999, Toxicity of cadmium telluride, copper indium diselenide, and copper gallium diselenide, Progress in Photovoltaics, 7, 489, 10.1002/(SICI)1099-159X(199911/12)7:6<489::AID-PIP287>3.0.CO;2-N

Gabor, 1994, High-efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films, Applied Physics Letters, 65, 198, 10.1063/1.112670

Gerischer, 1968, Elecrochemische Untersuchungen zur spectraleu sensibilisierung von ZnO-Einkristalien, Berichte der Bunsengesellschaft für Physikalische Chemie, 72, 437, 10.1002/bbpc.196800013

Goetzberger, 2003, Photovoltaic materials, history, status and outlook, Materials Science and Engineering, R, 40, 1, 10.1016/S0927-796X(02)00092-X

Goswami, 2004, New and emerging developments in solar energy, Solar Energy, 76, 33, 10.1016/S0038-092X(03)00103-8

Graetzel, 2001, Photoelectrochemical Cells, Nature, 414, 338, 10.1038/35104607

Granqvist, 2003, Solar energy materials, Advance Materials, 15, 1789, 10.1002/adma.200300378

Gratzel, 2005, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic Chemistry, 44, 6841, 10.1021/ic0508371

Green, M.A., 2000a. Status of crystalline photovoltaic technology. In: World Renewable Energy Congress VI, pp. 2630–2635.

Green, 2000, Prospects for photovoltaic efficiency enhancement using low dimensional structures, Nanotechnology, 11, 402, 10.1088/0957-4484/11/4/342

Green, 2002, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E, 14, 65, 10.1016/S1386-9477(02)00361-2

Green, 2004, Recent developments in photovoltaics, Solar Energy, 76, 3, 10.1016/S0038-092X(03)00065-3

Green, 2001, Progress and outlook for high efficiency crystalline silicon solar cells, Solar Energy Materials and Solar Cells, 65, 9, 10.1016/S0927-0248(00)00072-6

Gregg, 2005, The photoconversion mechanism of exitonic solar cells, MRS Bulletin, 30, 20, 10.1557/mrs2005.3

Guha, S., 1992. Amorphous silicon alloy technology for photovoltaics. In: Proceedings of the 6th International Photovoltaic Science and Engineering Conference, New Delhi, India, pp. 55–60.

Guha, 2004, Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition, Solar Energy, 77, 887, 10.1016/j.solener.2004.06.014

Guha, 1981, On light-induced effect in amorphous hydrogenated silicon, Journal of Applied Physics, 52, 859, 10.1063/1.328849

Guha, 1986, Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells, Applied Physics Letters, 49, 218, 10.1063/1.97176

Gupta, A., Compaan, A.D., 2003. 14% CdS/CdTe thin film cells with ZnO:Al TCQ. In: Materials Research Society Symposium – Proceedings, vol. 763, pp. 161–166.

Hadipour, 2008, Organic tandem and multi-junction solar cells, Advanced Functional Materials, 18, 169, 10.1002/adfm.200700517

Hamakawa, Y., 1994. Recent advances of thin film solar cells and their technologies. In: Proceedings of the First World Conference on Photovoltaic Energy Conversion, Hawaii, USA, pp. 34–41.

Hanna, 2006, Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, Journal of Applied Physics, 100, 074510-1, 10.1063/1.2356795

Hartley, 2001, The influence of CdTe growth ambient on MOCVD grown CdS/CdTe photovoltaic cells, Thin Solid Films, 387, 89, 10.1016/S0040-6090(00)01722-3

Hauffe, 1970, New experiments on the sensitization of zinc oxide by means of the electrochemical cell technique, Journal of the Electrochemical Society, 117, 993, 10.1149/1.2407745

Hedström, J., Ohlsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M., Schock, H.W., 1993. ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. In: The Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, New York, pp. 364–371.

Inomota, V., Fukui, K., Shirasawa, K., 1996. Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. In: Technical Digest, 9th International Photovoltaic Science and Engineering Conference, Miyazaki, Japan, pp. 109–110.

Jiang, 2006, Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications, Journal of Applied Physics, 99, 114902, 10.1063/1.2203394

Kaelin, 2004, Low cost processing of CIGS thin film solar cells, Solar Energy, 77, 749, 10.1016/j.solener.2004.08.015

Karg, 2001, Development and manufacturing of CIS thin film solar modules, Solar Energy Materials and Solar Cells, 66, 645, 10.1016/S0927-0248(00)00256-7

Kazmerski, 2006, Solar photovoltaics R&D: at the tipping point: a 2005 technology overview, Journal of Electron Spectroscopy and related Phenomena, 150, 105, 10.1016/j.elspec.2005.09.004

Kazmerski, 1976, Thin-film CuInSe2/CdS heterojunction solar cells, Applied Physics Letters, 29, 268, 10.1063/1.89041

Kessler, 2004, Technological aspects of flexible CIGS solar cells and modules, Solar Energy, 77, 685, 10.1016/j.solener.2004.04.010

Klein, 2004, Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD, Solar Energy, 77, 893, 10.1016/j.solener.2004.08.029

Kodolinski, 1993, Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells, Applied Physics Letters, 63, 2405, 10.1063/1.110489

Krishnan, 2008, Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes, Thin Solid Films, 516, 2244, 10.1016/j.tsf.2007.08.067

Krishnan, 2008, Design and development of batch fabricatable metal–insulator–metal diode and microstrip slot antenna as rectenna elements, Sensors and Actuators, 142, 40, 10.1016/j.sna.2007.04.021

Kushiya, 2004, Development of Cu(InGa)Se2-based thin-film PV modules with a Zn(O,S,OH)x buffer layer, Solar Energy, 77, 717, 10.1016/j.solener.2004.08.027

Kushiya, 2003, Yield issues on the fabrication of 30cm×30cm-sized Cu(In,Ga)Se2-based thin-film modules, Solar Energy Materials and Solar Cells, 75, 171, 10.1016/S0927-0248(02)00144-7

Lebrun, 1966, Réalisation et propriétés des photopiles solaires en couches minces de tellurure de cuivre et tellurure de cadmium, Revue de Physique Appliquee, 1, 204, 10.1051/rphysap:0196600103020400

Lechner, 2002, Photovoltaic thin-film technology based on hydrogenated amorphous silicon, Progress in Photovoltaics: Research and Applications, 10, 85, 10.1002/pip.412

Li, 2006, Review of recent progress in solid-state dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 90, 549, 10.1016/j.solmat.2005.04.039

Lin, 1996, Investigation of resonance light absorption and rectification by subnanostructures, Journal of Applied Physics, 80, 565, 10.1063/1.362762

Luque, 1997, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Physical Review Letters, 78, 5014, 10.1103/PhysRevLett.78.5014

Marsillae, 2002, High efficiency solar cells based on Cu(In,Al)Se2 thin films, Applied Physics Letters, 81, 1350, 10.1063/1.1499990

Marti, 1996, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, 43, 203, 10.1016/0927-0248(96)00015-3

Marti, 2006, Novel semiconductor solar cell structures: the quantum dot intermediate band solar cell, Thin Solid Films, 511–512, 638, 10.1016/j.tsf.2005.12.122

Mathew, 2003, Development of CdTe thin films on flexible substrates – a review, Solar Energy Materials & Solar Cells, 76, 293, 10.1016/S0927-0248(02)00281-7

Matsuda, 1986, Preparation of highly photosensitive hydrogenated amorphous Si–C alloys from a glow-discharge plasma, Journal of Applied Physics, 60, 4025, 10.1063/1.337528

Maycock, P.D., 2010. PV News, V.29, N5.

Mazzer, 2006, Progress in quantum well solar cells, Thin Solid Films, 511–512, 76, 10.1016/j.tsf.2005.12.120

McCandless, 2004, Processing options for CdTe thin film solar cells, Solar Energy, 77, 839, 10.1016/j.solener.2004.04.012

McCandless, 2003, Cadmium telluride solar cells

Mendoza-Per´ez, 2005, Effects of thiourea concentration on CdS thin films grown by chemical bath deposition for CdTe solar cells, Thin Solid Films, 480–481, 173, 10.1016/j.tsf.2004.11.060

Miyake, 2004, Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte, Journal of Electroanalytical Chemistry, 562, 247, 10.1016/j.jelechem.2003.09.008

Muller, 2004, TCO and light trapping in silicon thin film solar cells, Solar Energy, 77, 917, 10.1016/j.solener.2004.03.015

Murphy, 2006, PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation, Journal of the American Chemical Society, 128, 3241, 10.1021/ja0574973

Nakada, 2002, 18% Efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers, Japanese Journal of Applied Physics, 41, L165, 10.1143/JJAP.41.L165

Nakada, 2004, Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts, Solar Energy, 77, 739, 10.1016/j.solener.2004.08.010

Nazeeruddin, 1993, Conversion of light to electricity by cis-X2 bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X=Cl−, Br−, I−, CN− and SCN−) on nanocrystalline titanium dioxide electrodes, Journal of American Chemical Society, 115, 6382, 10.1021/ja00067a063

Nogueira, 2001, Electron transfer dynamics in dye sensitized nanocrystalline solar cells using a polymer electrolyte, Journal of Physical Chemistry B, 105, 7517, 10.1021/jp010420q

Nozik, 2002, Quantum dot solar cells, Physica E, 14, 115, 10.1016/S1386-9477(02)00374-0

Ohtake, 1995, Polycrystalline Cu(InGa)Se2 thin-film solar cells with ZnSe buffer layers, Japanese Journal of Applied Physics, 34, 5949, 10.1143/JJAP.34.5949

O’Regan, 1991, A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737, 10.1038/353737a0

Ott, J.H., Rice, J.S., Thorn, D.C., 1981. A theoretical study of microwave beam absorption by a rectenna. NASA Lyndon B. Johnson Space Center NAS9-16055, 14 January.

Palm, 2004, Second generation CIS solar modules, Solar Energy, 77, 757, 10.1016/j.solener.2004.05.011

Papageorgiou, 1997, An iodine/triiodide reduction electrocatalyst for aqueous and organic media, Journal of the Electrochemical Society, 144, 876, 10.1149/1.1837502

Pauwels, 1981, Determination of the maximum efficiency solar cell structure, Solid State Electronics, 24, 835, 10.1016/0038-1101(81)90099-X

Peumans, 2003, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, 93, 3693, 10.1063/1.1534621

Ramanathan, 2003, Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin film solar cells, Progress in Photovoltaics: Research and Applications, 11, 225, 10.1002/pip.494

Razykov, 1991, Chemical molecular beam deposition of II–VI binary and ternary compound films in gas flow, Applied Surface Science, 48, 89, 10.1016/0169-4332(91)90311-7

Razykov, T.M., 1996. A new conception on the passivation of the grain boundaries of polycrystalline thin film solar cells. In: Abstracts of the International Conf. EuroSun’ 96. Freiburg, Germany, pp. V-91–V-92.

Razykov, T.M., Rech, B., Tiwari, A.N. (Eds.), 2004. Special issue on thin Film PV. Solar Energy, N6.

Razykov, T.M., Contreras-Puente, G., Chornokur, G., Dybjec, M., Emirov, Y., Ergashev, B., Ferekides, C., Goswami, Y., Hubbimov, A., Ikramov, B., Kouchkarov, K., Mathew, X., Morel, D., Ostapenko, S., Sanchez-Meza, S., Stefanakos, E., Vigil-Galan, O., Vorobiev, Y., Zhao, H., 2007. Effect of CdCl2 treatment on structure and photoluminescence of CdTe films with different compositions fabricated by CMBD. Technical Digest of the International PVSEC-17, Fukuoka, Japan, 5P-P3-43, pp. 855–856.

Razykov, 2009, Structural, photoluminescent and electrical properties of CdTe films with different compositions fabricated by CMBD, Solar Energy, 83, 90, 10.1016/j.solener.2008.07.003

Rech, 1999, Potential of amorphous silicon for solar cells, Applied Physics A, 69, 155, 10.1007/s003390050986

Repins, 2008, 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Progress in Photovoltaics: Research and Applications, 16, 235, 10.1002/pip.822

Romeo, 1999, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells, 58, 209, 10.1016/S0927-0248(98)00204-9

Romeo, 2000, Growth of polycrystalline CdS and CdTe thin layers for high efficiency thin film solar cells, Materials Chemistry and Physics, 66, 201, 10.1016/S0254-0584(00)00316-3

Ross, 1982, Efficiency of hot-carrier solar energy converters, Journal of Applied Physics, 53, 3813, 10.1063/1.331124

Sarehraz, M., Buckle, K., Weller, T., Stefanakos, E., Bhansal, S., Goswami, Y., Krishnan, S., 2005. Rectenna developments for solar energy collection. In: 31st IEEE Photovoltaic Specialists Conference, Orlando, USA, pp. 78–81.

Schaller, 2004, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion, Physical Review Letters, 92, 186601-1, 10.1103/PhysRevLett.92.186601

Schaller, 2006, Non-poissonian exciton populations in semiconductor nanocrystals via carrier multiplication, Physical Review Letters, 96, 097402-1, 10.1103/PhysRevLett.96.097402

Schaller, 2005, Effect of electronic structure on carrier multiplication efficiency: comparative study of PbSe and CdSe nanocrystals, Applied Physics Letters, 87, 253102, 10.1063/1.2142092

Schaller, 2006, Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers, Nano Letters, 6, 424, 10.1021/nl052276g

Schock, 2001, Thin-film solar cells: past, present and future, Renewable Energy World, 75

Shah, 2004, Thin-film silicon solar cell technology, Progress in Photovoltaics: Research and Applications, 12, 113, 10.1002/pip.533

Shockley, 1961, Detailed balance limit of efficiency of p–n junction solar cells, Journal of Applied Physics, 32, 510, 10.1063/1.1736034

Sopori, 2003, Thin film Si solar cells

Spiering, 2003, CD-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD, Thin Solid Films, 431–432, 359, 10.1016/S0040-6090(03)00151-2

Staebler, 1977, Reversible conductivity changes in discharge-produced amorphous Si, Applied Physics Letters, 31, 292, 10.1063/1.89674

Stathatos, 2003, A quasi-solid-state dye-sensitized solar cell based on a sol–gel nanocomposite electrolyte containing ionic liquid, Chemistry of Materials, 15, 1825, 10.1021/cm0213568

Stathatos, 2004, Dye-sensitized photoelectrochemical solar cells based on nanocomposite organic–inorganic materials, Journal of Photochemistry and Photobiology A: Chemistry, 169, 57, 10.1016/j.jphotochem.2004.06.007

Suh, 2000, Circularly polarized truncated-corner square patch microstrip rectenna for wireless power transmission, Electronics Letters, 36, 600, 10.1049/el:20000527

Sundaram, V.S., Fraas, L.M., Gruenbaum, P.E., Avery, J.E., Maloesay, E., Kuryla, M.S., 1992. High efficiency tandem GaAs/GaSb concentrator solar cells. In: Proceedings of the 6th International Photovoltaic Science and Engineering Conference, New Delhi, India, pp. 395–400.

Tang, 1986, Two-layer organic photovoltaic cell, Applied Physics Letters, 48, 183, 10.1063/1.96937

Tobias, 2002, Ideal efficiency of monolithic, series-connected multijunction solar cells, Progress in Photovoltaics: Research and Applications, 10, 323, 10.1002/pip.427

Tsubomura, 1976, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature, 261, 402, 10.1038/261402a0

Upadhyaya, 2007, Thin film PV technology

Vamsi Krishna, 2004, Effect of in situ CdCl2 treatment on spray deposited CdTe/CdS heterostructure, Journal of Applied Physics, 96, 3962, 10.1063/1.1779952

Vetterl, 2000, Intrinsic microcrystalline silicon: a new material for photovoltaics, Soar Energy Materials and Solar Cells, 62, 97, 10.1016/S0927-0248(99)00140-3

von Roedern, 2003, Status of amorphous and crystalline thin-film silicon solar cell activities, NCPV and Solar Program Review Meeting, 5, 552

von Roedern, B., 2010. Data taken from websites.

von Roedern, B., Zweibel, K., Ullal, H.S., 2005. The role of polycrystalline thin-film PV technologies for achieving mid-term market-competitive PV modules. In: Proc. of the IEEE PVSC-31, Orlando, USA, pp. 1635–1638.

Wagner, 1974, CuInSe2/CdS heterojunction photovoltaic detectors, Applied Physics Letters, 25, 434, 10.1063/1.1655537

Wang, 2004, Solidifying liquid electrolytes with fluorine polymer and silicananoparticles for quasi-solid dye-sensitized solar cells, Journal of Fluorine Chemistry, 125, 1241, 10.1016/j.jfluchem.2004.05.010

Wang, Z.A., Zhu, H.B., Zhang, D.W., Shi, J.H., Li, X.D., Cheng, W.J., Sun, Z., Huang, S.M., 2009. Stability of transparent conducting oxide films deposited by sputtering for solar cells applications. In: Conference Record of the IEEE Photovoltaic Specialists Conference, Art. No. 5411587, pp. 000676–000679.

Wettling, 1995, High efficiency silicon solar cells: state of the art and trends, Solar Energy Materials and Solar Cells, 38, 487, 10.1016/0927-0248(94)00240-1

Woggan, 1997

Wu, X., Keane, J.C., DeHart, C., Albin, D.S., Duda, A., Gessert, T.A., Asher, S., Levi, D.H., Scheldon, P., 2001. 16.5% efficient CdS/CdTe polycrystalline thin film solar cell. In: Proc. of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, pp. 995–999.

Yamaguchi, 2005, Multi-junction III–V solar cells: current status and future potential, Solar Energy, 79, 78, 10.1016/j.solener.2004.09.018

Yamaguchi, 2008, Novel materials for high-efficiency III–V multi-junction solar cells, Solar Energy, 82, 173, 10.1016/j.solener.2007.06.011

Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A., 1999. Cost effective and high performance thin film Si solar cells towards the 21century. Technical Digest. The International PVSEC-11, Sapporo, Japan, pp. 225–228.

Yamamoto, 2004, A high efficiency thin film silicon solar cell and module, Solar Energy, 77, 939, 10.1016/j.solener.2004.08.028

Yoo, 1992, Theoretical and experimental development of 10 and 35 GHz rectennas, IEEE Transactions on Microwave Theory and Techniques, 40, 1259, 10.1109/22.141359

Zhao, 1998, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, 73, 1991, 10.1063/1.122345

Zhao, 2001, High efficiency PERL and PERT silicon solar cells on FZ and MCZ Substrates, Solar Energy Materials and Solar Cells, 65, 429, 10.1016/S0927-0248(00)00123-9

Zolper, 1989, 16.7% efficiency, laser textured, buried contact polycrystalline silicon solar cells, Applied Physics Letters, 55, 2363, 10.1063/1.102019

Zweibel, K., 2005. The Terawatt challenge for thin film PV. In: Poortmans, J., Archipov, V. (Eds.), Thin Film Solar Cells: Fabrication, Characterization and Application. John Wiley, pp. 18–22.