Solar cycle prediction

K. Petrovay1
1Department of Astronomy, Eötvös Loránd University, Budapest, Hungary

Tóm tắt

AbstractA review of solar cycle prediction methods and their performance is given, including early forecasts for Cycle 25. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. The choice of a good precursor often implies considerable physical insight: indeed, it has become increasingly clear that the transition from purely empirical precursors to model-based methods is continuous. Model-based approaches can be further divided into two groups: predictions based on surface flux transport models and on consistent dynamo models. The implicit assumption of precursor methods is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time, and therefore it lends itself to analysis and forecasting by time series methods. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. One method that has yielded predictions consistently in the right range during the past few solar cycles is the polar field precursor. Nevertheless, some extrapolation methods may still be worth further study. Model based forecasts are quickly coming into their own, and, despite not having a long proven record, their predictions are received with increasing confidence by the community.

Từ khóa


Tài liệu tham khảo

Ables JG (1974) Maximum entropy spectral analysis. Astron Astrophys Suppl 15:383–393

Adomian G (1989) Nonlinear stochastic systems theory and applications to physics. Kluwer Academic, Dordrecht

Aguirre LA, Letellier C, Maquet J (2008) Forecasting the time series of sunspot numbers. Sol Phys 249:103–120. https://doi.org/10.1007/s11207-008-9160-5

Ahluwalia HS (1998) The predicted size of cycle 23 based on the inferred three-cycle quasi-periodicity of the planetary index $$A_p$$. J Geophys Res 103:12103–12109. https://doi.org/10.1029/98JA00960

Arlt R (2008) Digitization of sunspot drawings by Staudacher in 1749–1796. Sol Phys 247:399–410. https://doi.org/10.1007/s11207-007-9113-4

Arlt R (2009) The butterfly diagram in the eighteenth century. Sol Phys 255:143–153. https://doi.org/10.1007/s11207-008-9306-5. arXiv:0812.2233

Arlt R, Leussu R, Giese N, Mursula K, Usoskin IG (2013) Sunspot positions and sizes for 1825–1867 from the observations by Samuel Heinrich Schwabe. Mon Not R Astron Soc 433:3165–3172. https://doi.org/10.1093/mnras/stt961. arXiv:1305.7400

Arlt R, Senthamizh Pavai V, Schmiel C, Spada F (2016) Sunspot positions, areas, and group tilt angles for 1611–1631 from observations by Christoph Scheiner. Astron Astrophys 595:A104. https://doi.org/10.1051/0004-6361/201629000. arXiv:1608.07172

Asvestari E, Usoskin IG, Kovaltsov GA, Owens MJ, Krivova NA, Rubinetti S, Taricco C (2017) Assessment of different sunspot number series using the cosmogenic isotope $$^{44}$$Ti in meteorites. Mon Not R Astron Soc 467:1608–1613. https://doi.org/10.1093/mnras/stx190

Ataç T, Özgüç A (2001) Flare index during the rising phase of solar cycle 23. Sol Phys 198:399–407. https://doi.org/10.1023/A:1005218315298

Ataç T, Özgüç A (2006) Overview of the solar activity during solar cycle 23. Sol Phys 233:139–153. https://doi.org/10.1007/s11207-006-1112-3

Attia AF, Ismail HA, Basurah HM (2013) A neuro-fuzzy modeling for prediction of solar cycles 24 and 25. Ap&SS 344:5–11. https://doi.org/10.1007/s10509-012-1300-6

Badalyan OG, Obridko VN, Sýkora J (2001) Brightness of the coronal green line and prediction for activity cycles 23 and 24. Sol Phys 199:421–435. https://doi.org/10.1023/A:1010343520424

Bai T, Cliver EW (1990) A 154 day periodicity in the occurrence rate of proton flares. Astrophys J 363:299–309. https://doi.org/10.1086/169342

Balogh A, Hudson HS, Petrovay K, von Steiger R (2014) Introduction to the solar activity cycle: overview of causes and consequences. Space Sci Rev 186:1–15. https://doi.org/10.1007/s11214-014-0125-8

Baranyi T (2015) Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy’s law. Mon Not R Astron Soc 447:1857–1865. https://doi.org/10.1093/mnras/stu2572. arXiv:1412.1355

Baranyi T, Győri L, Ludmány A (2016) On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol Phys 291:3081–3102. https://doi.org/10.1007/s11207-016-0930-1. arXiv:1606.00669

Basu S, Broomhall AM, Chaplin WJ, Elsworth Y (2012) Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys J 758:43. https://doi.org/10.1088/0004-637X/758/1/43. arXiv:1208.5493

Beck JG, Gizon L, Duvall TL Jr (2002) A new component of solar dynamics: north–south diverging flows migrating toward the equator with an 11 year period. Astrophys J Lett 575:L47–L50. https://doi.org/10.1086/342636

Beer J, Vonmoos M, Muscheler R (2006) Solar variability over the past several millennia. Space Sci Rev 125:67–79. https://doi.org/10.1007/s11214-006-9047-4

Belucz B, Dikpati M, Forgács-Dajka E (2015) A Babcock–Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes. Astrophys J 806:169. https://doi.org/10.1088/0004-637X/806/2/169. arXiv:1504.00420

Berggren A, Beer J, Possnert G, Aldahan A, Kubik P, Christl M, Johnsen SJ, Abreu J, Vinther BM (2009) A 600-year annual $$^{10}$$Be record from the NGRIP ice core, greenland. Geophys Res Lett 36:11801. https://doi.org/10.1029/2009GL038004

Bhatt NJ, Jain R, Aggarwal M (2009) Prediction of the maximum amplitude and timing of sunspot cycle 24. Sol Phys 260:225–232. https://doi.org/10.1007/s11207-009-9439-1

Biesecker D, Upton L (2019) Solar cycle 25—call for predictions. Solar News 2019/1:1. https://www.nso.edu/solarnews/solar-cycle-25-call-for-predictions/

Blais A, Mertz D (2001) An introduction to neural networks. IBM Developer. http://www.ibm.com/developerworks/library/l-neural/

Blanter EM, Le Mouël JL, Shnirman MG, Courtillot V (2014) Kuramoto model of nonlinear coupled oscillators as a way for understanding phase synchronization: application to solar and geomagnetic indices. Sol Phys 289:4309–4333. https://doi.org/10.1007/s11207-014-0568-9

Blanter E, Le Mouël JL, Shnirman M, Courtillot V (2016) Kuramoto model with non-symmetric coupling reconstructs variations of the solar-cycle period. Sol Phys 291:1003–1023. https://doi.org/10.1007/s11207-016-0867-4

Blanter E, Le Mouël JL, Shnirman M, Courtillot V (2017) Reconstruction of the north–south solar asymmetry with a Kuramoto model. Sol Phys 292:54. https://doi.org/10.1007/s11207-017-1078-3

Box GEP, Jenkins GM (2008) Time series analysis: forecasting and control, 2nd edn. Wiley, Hoboken

Bracewell RN (1953) The sunspot number series. Nature 171:649–650. https://doi.org/10.1038/171649a0

Bracewell RN (1988) Three-halves law in sunspot cycle shape. Mon Not R Astron Soc 230:535–550. https://doi.org/10.1093/mnras/230.4.535

Brajša R, Wöhl H, Hanslmeier A, Verbanac G, Ruždjak D, Cliver E, Svalgaard L, Roth M (2009) On solar cycle predictions and reconstructions. Astron Astrophys 496:855–861. https://doi.org/10.1051/0004-6361:200810862

Brown GM (1976) What determines sunspot maximum. Mon Not R Astron Soc 174:185–189. https://doi.org/10.1093/mnras/174.1.185

Browning MK, Miesch MS, Brun AS, Toomre J (2006) Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys J Lett 648:L157–L160. https://doi.org/10.1086/507869. arXiv:astro-ph/0609153

Bushby PJ, Tobias SM (2007) On predicting the solar cycle using mean-field models. Astrophys J 661:1289–1296. https://doi.org/10.1086/516628. arXiv:0704.2345

Calvo RA, Ceccato HA, Piacentini RD (1995) Neural network prediction of solar activity. Astrophys J 444:916–921. https://doi.org/10.1086/175661

Cameron R, Schüssler M (2007) Solar cycle prediction using precursors and flux transport models. Astrophys J 659:801–811. https://doi.org/10.1086/512049. arXiv:astro-ph/0612693

Cameron R, Schüssler M (2008) A robust correlation between growth rate and amplitude of solar cycles: consequences for prediction methods. Astrophys J 685:1291–1296. https://doi.org/10.1086/591079

Cameron RH, Schüssler M (2010) Changes of the solar meridional velocity profile during cycle 23 explained by flows toward the activity belts. Astrophys J 720:1030–1032. https://doi.org/10.1088/0004-637X/720/2/1030. arXiv:1007.2548

Cameron RH, Schüssler M (2012) Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron Astrophys 548:A57. https://doi.org/10.1051/0004-6361/201219914. arXiv:1210.7644

Cameron RH, Schüssler M (2017a) An update of Leighton’s solar dynamo model. Astron Astrophys 599:A52. https://doi.org/10.1051/0004-6361/201629746. arXiv:1611.09111

Cameron RH, Schüssler M (2017b) Understanding solar cycle variability. Astrophys J 843:111. https://doi.org/10.3847/1538-4357/aa767a. arXiv:1705.10746

Cameron RH, Jiang J, Schmitt D, Schüssler M (2010) Surface flux transport modeling for solar cycles 15–21: effects of cycle-dependent tilt angles of sunspot groups. Astrophys J 719:264–270. https://doi.org/10.1088/0004-637X/719/1/264. arXiv:1006.3061

Cameron RH, Dasi-Espuig M, Jiang J, Işık E, Schmitt D, Schüssler M (2013) Limits to solar cycle predictability: cross-equatorial flux plumes. Astron Astrophys 557:A141. https://doi.org/10.1051/0004-6361/201321981. arXiv:1308.2827

Cameron RH, Jiang J, Schüssler M, Gizon L (2014) Physical causes of solar cycle amplitude variability. J Geophys Res 119:680–688. https://doi.org/10.1002/2013JA019498

Cameron RH, Jiang J, Schüssler M (2016) Solar cycle 25: Another moderate cycle? Astrophys J Lett 823:L22. https://doi.org/10.3847/2041-8205/823/2/L22. arXiv:1604.05405

Cameron RH, Dikpati M, Brandenburg A (2017) The global solar dynamo. Space Sci Rev 210:367–395. https://doi.org/10.1007/s11214-015-0230-3. arXiv:1602.01754

Carbonell M, Oliver R, Ballester JL (1994) A search for chaotic behaviour in solar activity. Astron Astrophys 290:983–994

Carrasco VMS, Vaquero JM, Gallego MC, Sánchez-Bajo F (2016) A normalized sunspot-area series starting in 1832: an update. Sol Phys 291:2931–2940. https://doi.org/10.1007/s11207-016-0943-9. arXiv:1606.04280

Charbonneau P (2001) Multiperiodicity, chaos, and intermittency in a reduced model of the solar cycle. Sol Phys 199:385–404

Charbonneau P (2007) Flux transport dynamos. Scholarpedia 2(9):3440. https://doi.org/10.4249/scholarpedia.3440. http://www.scholarpedia.org/article/Flux_transport_dynamos

Charbonneau P (2010) Dynamo models of the solar cycle. Living Rev Sol Phys 7:3. https://doi.org/10.12942/lrsp-2010-3

Charbonneau P, Barlet G (2011) The dynamo basis of solar cycle precursor schemes. J Atmos Sol-Terr Phys 73:198–206. https://doi.org/10.1016/j.jastp.2009.12.020

Charbonneau P, Dikpati M (2000) Stochastic fluctuations in a Babcock–Leighton model of the solar cycle. Astrophys J 543:1027–1043. https://doi.org/10.1086/317142

Charbonneau P, Beaubien G, St-Jean C (2007) Fluctuations in Babcock–Leighton dynamos. II. Revisiting the Gnevyshev–Ohl rule. Astrophys J 658:657–662. https://doi.org/10.1086/511177

Chatterjee P, Nandy D, Choudhuri AR (2004) Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron Astrophys 427:1019–1030. https://doi.org/10.1051/0004-6361:20041199

Chatzistergos T, Usoskin IG, Kovaltsov GA, Krivova NA, Solanki SK (2017) New reconstruction of the sunspot group numbers since 1739 using direct calibration and “backbone” methods. Astron Astrophys 602:A69. https://doi.org/10.1051/0004-6361/201630045. arXiv:1702.06183

Chou DY, Dai DC (2001) Solar cycle variations of subsurface meridional flows in the sun. Astrophys J Lett 559:L175–L178. https://doi.org/10.1086/323724

Choudhuri AR, Chatterjee P, Jiang J (2007) Predicting solar cycle 24 with a solar dynamo model. Phys Rev Lett 98(13):131103. https://doi.org/10.1103/PhysRevLett.98.131103. arXiv:astro-ph/0701527

Chylek P, Klett JD, Lesins G, Dubey MK, Hengartner N (2014) The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate. Geophys Res Lett 41:1689–1697. https://doi.org/10.1002/2014GL059274

Clette F, Lefèvre L (2016) The new sunspot number: assembling all corrections. Sol Phys 291:2629–2651. https://doi.org/10.1007/s11207-016-1014-y

Clette F, Svalgaard L, Vaquero JM, Cliver EW (2014) Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci Rev 186:35–103. https://doi.org/10.1007/s11214-014-0074-2. arXiv:1407.3231

Clette F, Cliver EW, Lefèvre L, Svalgaard L, Vaquero JM, Leibacher JW (2016a) Preface to topical issue: recalibration of the sunspot number. Sol Phys 291:2479–2486. https://doi.org/10.1007/s11207-016-1017-8

Clette F, Lefèvre L, Cagnotti M, Cortesi S, Bulling A (2016b) The revised Brussels–Locarno sunspot number (1981–2015). Sol Phys 291:2733–2761. https://doi.org/10.1007/s11207-016-0875-4. arXiv:1507.07803

Cliver EW (2014) The extended cycle of solar activity and the Sun’s 22-year magnetic cycle. Space Sci Rev 186:169–189. https://doi.org/10.1007/s11214-014-0093-z

Cliver EW (2016) Comparison of new and old sunspot number time series. Sol Phys 291:2891–2916. https://doi.org/10.1007/s11207-016-0929-7

Cole TW (1973) Periodicities in solar activity. Sol Phys 30:103–110. https://doi.org/10.1007/BF00156178

Conway AJ (1998) Time series, neural networks and the future of the Sun. New Astron Rev 42:343–394. https://doi.org/10.1016/S1387-6473(98)00041-4

Covas E (2017) Spatial–temporal forecasting the sunspot diagram. Astron Astrophys 605:A44. https://doi.org/10.1051/0004-6361/201629130. arXiv:1709.02796

Covas E, Peixinho N, Fernandes J (2019) Neural network forecast of the sunspot butterfly diagram. Sol Phys 294(3):24. https://doi.org/10.1007/s11207-019-1412-z. arXiv:1801.04435

Currie RG (1973) Fine structure in the sunspot spectrum—2 to 70 years. Astrophys Space Sci 20:509–518. https://doi.org/10.1007/BF00642220

Dabas RS, Sharma K, Das RM, Pillai KGM, Chopra P, Sethi NK (2008) A prediction of solar cycle 24 using a modified precursor method. Sol Phys 250:171–181. https://doi.org/10.1007/s11207-008-9200-1

Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T (2010) Sunspot group tilt angles and the strength of the solar cycle. Astron Astrophys 518:A7. https://doi.org/10.1051/0004-6361/201014301. arXiv:1005.1774

de Meyer F (1981) Mathematical modelling of the sunspot cycle. Sol Phys 70:259–272. https://doi.org/10.1007/BF00151333

de Toma G, Chapman GA, Cookson AM, Preminger D (2013a) Temporal stability of sunspot umbral intensities: 1986–2012. Astrophys J Lett 771:L22. https://doi.org/10.1088/2041-8205/771/2/L22

de Toma G, Chapman GA, Preminger DG, Cookson AM (2013b) Analysis of sunspot area over two solar cycles. Astrophys J 770:89. https://doi.org/10.1088/0004-637X/770/2/89

DeRosa ML, Brun AS, Hoeksema JT (2012) Solar magnetic field reversals and the role of dynamo families. Astrophys J 757:96. https://doi.org/10.1088/0004-637X/757/1/96. arXiv:1208.1768

Diercke A, Arlt R, Denker C (2015) Digitization of sunspot drawings by Spörer made in 1861–1894. Astron Nachr 336:53. https://doi.org/10.1002/asna.201412138. arXiv:1411.7790

Dikpati M, Gilman PA (2006) Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys J 649:498–514. https://doi.org/10.1086/506314

Dikpati M, de Toma G, Gilman PA (2006) Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys Res Lett 33:5102. https://doi.org/10.1029/2005GL025221

Dikpati M, Gilman PA, de Toma G, Ghosh SS (2007) Simulating solar cycles in northern and southern hemispheres by assimilating magnetic data into a calibrated flux-transport dynamo. Sol Phys 245:1–17. https://doi.org/10.1007/s11207-007-9016-4

Dikpati M, Gilman PA, de Toma G (2008) The Waldmeier effect: An artifact of the definition of Wolf sunspot number? Astrophys J Lett 673:L99–L101. https://doi.org/10.1086/527360

Dmitrieva IV, Kuzanyan KM, Obridko VN (2000) Amplitude and period of the dynamo wave and prediction of the solar cycle. Sol Phys 195:209–218. https://doi.org/10.1023/A:1005207828577

D’Silva S, Choudhuri AR (1993) A theoretical model for tilts of bipolar magnetic regions. Astron Astrophys 272:621

Du ZL (2012) The solar cycle: a new prediction technique based on logarithmic values. Astrophys Space Sci 338:9–13. https://doi.org/10.1007/s10509-011-0906-4. arXiv:1110.5973

Du ZL, Li R, Wang HN (2009) The predictive power of Ohl’s precursor method. Astron J 138:1998–2001. https://doi.org/10.1088/0004-6256/138/6/1998

Durney BR (2000) On the differences between odd and even solar cycles. Sol Phys 196:421–426. https://doi.org/10.1023/A:1005285315323

Eddy JA (1976) The Maunder minimum. Science 192(4245):1189–1202. https://doi.org/10.1126/science.192.4245.1189

Ermolli I, Shibasaki K, Tlatov A, van Driel-Gesztelyi L (2014) Solar cycle indices from the photosphere to the corona: measurements and underlying physics. Space Sci Rev 186:105–135. https://doi.org/10.1007/s11214-014-0089-8. arXiv:1705.07054

Fan Y, Fang F (2014) A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys J 789:35. https://doi.org/10.1088/0004-637X/789/1/35. arXiv:1405.3926

Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848. https://doi.org/10.1103/PhysRevLett.59.845

Feynman J (1982) Geomagnetic and solar wind cycles, 1900–1975. J Geophys Res 87:6153–6162. https://doi.org/10.1029/JA087iA08p06153

Fisher GH, Fan Y, Howard RF (1995) Comparisons between theory and observation of active region tilts. Astrophys J 438:463. https://doi.org/10.1086/175090

Fligge M, Solanki SK, Beer J (1999) Determination of solar cycle length variations using the continuous wavelet transform. Astron Astrophys 346:313–321

Forgács-Dajka E, Borkovits T (2007) Searching for mid-term variations in different aspects of solar activity—looking for probable common origins and studying temporal variations of magnetic polarities. Mon Not R Astron Soc 374:282–291. https://doi.org/10.1111/j.1365-2966.2006.11167.x

Freitas US, Letellier C, Aguirre LA (2009) Failure in distinguishing colored noise from chaos using the “noise titration” technique. Phys Rev E 79(3):035201. https://doi.org/10.1103/PhysRevE.79.035201

Frick P, Galyagin D, Hoyt DV, Nesme-Ribes E, Schatten KH, Sokoloff D, Zakharov V (1997) Wavelet analysis of solar activity recorded by sunspot groups. Astron Astrophys 328:670–681

Friedli TK (2016) Sunspot observations of Rudolf Wolf from 1849–1893. Sol Phys 291:2505–2517. https://doi.org/10.1007/s11207-016-0907-0

Gao PX, Zhong J (2016) The curious temporal behavior of the frequency of different class flares. New Astron 43:91–94. https://doi.org/10.1016/j.newast.2015.08.004

Georgieva K, Kilçik A, Nagovitsyn Y, Kirov B (2017) The ratio between the number of sunspot and the number of sunspot groups. Geomagn Aeron 57:776–782. https://doi.org/10.1134/S001679321707009X. arXiv:1710.01775

Gizzatullina SM, Rukavishnikov VD, Ruzmaikin AA, Tavastsherna KS (1990) Radiocarbon evidence of the global stochasticity of solar activity. Sol Phys 127:281–288. https://doi.org/10.1007/BF00152167

Gleissberg W (1939) A long-periodic fluctuation of the sun-spot numbers. Observatory 62:158–159

Gleissberg W (1952) Die Häufigkeit der Sonnenflecken. Akademie-Verlag, Berlin

Gleissberg W (1967) Secularly smoothed data on the minima and maxima of sunspot frequency. Sol Phys 2:231–233. https://doi.org/10.1007/BF00155925

Gnevyshev MN, Ohl AI (1948) On the 22-year cycle of solar activity. Astron Zh 25:18–20

Goel A, Choudhuri AR (2009) The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res Astron Astrophys 9:115–126. https://doi.org/10.1088/1674-4527/9/1/010. arXiv:0712.3988

Göker ÜD, Singh J, Nutku F, Priyal M (2017) Temporal variations of different solar activity indices through the solar cycles 21–23. Serbian Astron J 195:59–70. https://doi.org/10.2298/SAJ1795059G

Gopalswamy N, Mäkelä P, Yashiro S, Akiyama S (2018) Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J Atmos Sol-Terr Phys 176:26–33. https://doi.org/10.1016/j.jastp.2018.04.005. arXiv:1804.02544

Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349. https://doi.org/10.1103/PhysRevLett.50.346

Győri L, Ludmány A, Baranyi T (2017) Comparative analysis of Debrecen sunspot catalogues. Mon Not R Astron Soc 465:1259–1273. https://doi.org/10.1093/mnras/stw2667. arXiv:1612.03274

Haber DA, Hindman BW, Toomre J, Thompson MJ (2004) Organized subsurface flows near active regions. Sol Phys 220:371–380. https://doi.org/10.1023/B:SOLA.0000031405.52911.08

Halm J (1901) Über eine neue theorie zur erklärung der periodicität der solaren erscheinungen. Astron Nachr 156:33–50. https://doi.org/10.1002/asna.19011560302

Hanslmeier A, Brajša R (2010) The chaotic solar cycle. I. Analysis of cosmogenic $$^{14}$$C-data. Astron Astrophys 509:A5. https://doi.org/10.1051/0004-6361/200913095

Hathaway DH (2009) Solar cycle forecasting. Space Sci Rev 144:401–412. https://doi.org/10.1007/s11214-008-9430-4

Hathaway DH (2010) Does the current minimum validate (or invalidate) cycle prediction methods? In: Cranmer SR, Hoeksema JT, Kohl JL (eds) SOHO-23: understanding a peculiar solar minimum, ASP conference series, vol 428. Astronomical Society of the Pacific, San Francisco, p 307. arXiv:1003.4208

Hathaway DH (2015) The solar cycle. Living Rev Sol Phys 12:4. https://doi.org/10.1007/lrsp-2015-4. arXiv:1502.07020

Hathaway DH, Rightmire L (2010) Variations in the Sun’s meridional flow over a solar cycle. Science 327:1350. https://doi.org/10.1126/science.1181990

Hathaway DH, Upton LA (2016) Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res 121(A10):10. https://doi.org/10.1002/2016JA023190. arXiv:1611.05106

Hathaway DH, Wilson RM, Reichmann EJ (1994) The shape of the sunspot cycle. Sol Phys 151:177–190. https://doi.org/10.1007/BF00654090

Hawkes G, Berger MA (2018) Magnetic helicity as a predictor of the solar cycle. Sol Phys 293:109. https://doi.org/10.1007/s11207-018-1332-3

Hazra G, Choudhuri AR (2017) A theoretical model of the variation of the meridional circulation with the solar cycle. Mon Not R Astron Soc 472:2728–2741. https://doi.org/10.1093/mnras/stx2152. arXiv:1708.05204

Hazra S, Passos D, Nandy D (2014) A stochastically forced time delay solar dynamo model: self-consistent recovery from a Maunder-like grand minimum necessitates a mean-field alpha effect. Astrophys J 789:5. https://doi.org/10.1088/0004-637X/789/1/5. arXiv:1307.5751

Hazra G, Karak BB, Banerjee D, Choudhuri AR (2015) Correlation between decay rate and amplitude of solar cycles as revealed from observations and dynamo theory. Sol Phys 290:1851–1870. https://doi.org/10.1007/s11207-015-0718-8. arXiv:1410.8641

Hazra G, Choudhuri AR, Miesch MS (2017) A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model. Astrophys J 835:39. https://doi.org/10.3847/1538-4357/835/1/39. arXiv:1610.02726

Hegger R, Kantz H, Schreiber T (1999) Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9:413. https://doi.org/10.1063/1.166424

Henwood R, Chapman SC, Willis DM (2010) Increasing lifetime of recurrent sunspot groups within the greenwich photoheliographic results. Sol Phys 262:299–313. https://doi.org/10.1007/s11207-009-9419-5. arXiv:0907.4274

Hiremath KM (2006) The solar cycle as a forced and damped harmonic oscillator: long-term variations of the amplitudes, frequencies and phases. Astron Astrophys 452:591–595. https://doi.org/10.1051/0004-6361:20042619

Hiremath KM (2008) Prediction of solar cycle 24 and beyond. Astrophys Space Sci 314:45–49. https://doi.org/10.1007/s10509-007-9728-9

Hoeksema JT (1995) The large-scale structure of the heliospheric current sheet during the ulysses epoch. Space Sci Rev 72:137–148. https://doi.org/10.1007/BF00768770

Howe R (2009) Solar interior rotation and its variation. Living Rev Sol Phys 6:1. https://doi.org/10.12942/lrsp-2009-1. arXiv:0902.2406

Howe R, Christensen-Dalsgaard J, Hill F, Komm R, Schou J, Thompson MJ (2009) A note on the torsional oscillation at solar minimum. Astrophys J Lett 701:L87–L90. https://doi.org/10.1088/0004-637X/701/2/L87. arXiv:0907.2965

Howe R, Christensen-Dalsgaard J, Hill F, Komm R, Larson TP, Rempel M, Schou J, Thompson MJ (2013) The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys J Lett 767:L20. https://doi.org/10.1088/2041-8205/767/1/L20

Howe R, Davies GR, Chaplin WJ, Elsworth Y, Basu S, Hale SJ, Ball WH, Komm RW (2017) The Sun in transition? Persistence of near-surface structural changes through Cycle 24. Mon Not R Astron Soc 470:1935–1942. https://doi.org/10.1093/mnras/stx1318. arXiv:1705.09099

Howe R, Hill F, Komm R, Chaplin WJ, Elsworth Y, Davies GR, Schou J, Thompson MJ (2018) Signatures of solar cycle 25 in subsurface zonal flows. Astrophys J Lett 862:L5. https://doi.org/10.3847/2041-8213/aad1ed. arXiv:1807.02398

Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Sol Phys 181:491–512

Hudson H, Fletcher L, McTiernan J (2014) Cycle 23 variation in solar flare productivity. Sol Phys 289:1341–1347. https://doi.org/10.1007/s11207-013-0384-7. arXiv:1401.6474

Hung CP, Jouve L, Brun AS, Fournier A, Talagrand O (2015) Estimating the deep solar meridional circulation using magnetic observations and a dynamo model: a variational approach. Astrophys J 814:151. https://doi.org/10.1088/0004-637X/814/2/151. arXiv:1710.02084

Hung CP, Brun AS, Fournier A, Jouve L, Talagrand O, Zakari M (2017) Variational estimation of the large-scale time-dependent meridional circulation in the Sun: proofs of concept with a solar mean field dynamo model. Astrophys J 849:160. https://doi.org/10.3847/1538-4357/aa91d1. arXiv:1710.02114

Iijima H, Hotta H, Imada S, Kusano K, Shiota D (2017) Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron Astrophys 607:L2. https://doi.org/10.1051/0004-6361/201731813. arXiv:1710.06528

Işık E (2015) A mechanism for the dependence of sunspot group tilt angles on cycle strength. Astrophys J Lett 813:L13. https://doi.org/10.1088/2041-8205/813/1/L13. arXiv:1510.04323

Işık E, Işık S, Kabasakal BB (2018) Sunspot group tilt angles from drawings for cycles 19–24. In: Banerjee D, Jiang J, Kusano K, Solanki S (eds) Long-term datasets for the understanding of solar and stellar magnetic cycles. IAU symposium, vol 340. Cambridge University Press, Cambridge, pp 133–146. https://doi.org/10.1017/S1743921318001461. arXiv:1804.10479

Ivanov VG (2012) Joy’s law and its features according to the data of three sunspot catalogs. Geomagn Aeron 52:999–1004. https://doi.org/10.1134/S0016793212080130

Izenman AJ (1983) J. R. Wolf and H. A. Wolfer: an historical note on the Zurich sunspot relative numbers. J R Stat Soc A 146:311–318. https://doi.org/10.2307/2981658. http://www.jstor.org/pss/2981658

Javaraiah J (2012) The G–O rule and Waldmeier effect in the variations of the numbers of large and small sunspot groups. Sol Phys 281:827–837. https://doi.org/10.1007/s11207-012-0106-6. arXiv:1208.2862

Jensen JL (1993) Comments on nonparametric predictions of sunspot numbers. Astron J 105:350–352. https://doi.org/10.1086/116433

Jiang J, Cao J (2018) Predicting solar surface large-scale magnetic field of cycle 24. J Atmos Sol-Terr Phys 176:34–41. https://doi.org/10.1016/j.jastp.2017.06.019. arXiv:1707.00268

Jiang J, Chatterjee P, Choudhuri AR (2007) Solar activity forecast with a dynamo model. Mon Not R Astron Soc 381:1527–1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x. arXiv:0707.2258

Jiang J, Cameron R, Schmitt D, Schüssler M (2010a) Modeling the Sun’s open magnetic flux and the heliospheric current sheet. Astrophys J 709:301–307. https://doi.org/10.1088/0004-637X/709/1/301. arXiv:0912.0108

Jiang J, Işik E, Cameron RH, Schmitt D, Schüssler M (2010b) The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys J 717:597–602. https://doi.org/10.1088/0004-637X/717/1/597. arXiv:1005.5317

Jiang J, Cameron RH, Schmitt D, Schüssler M (2011a) The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron Astrophys 528:A82. https://doi.org/10.1051/0004-6361/201016167. arXiv:1102.1266

Jiang J, Cameron RH, Schmitt D, Schüssler M (2011b) The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron Astrophys 528:A83. https://doi.org/10.1051/0004-6361/201016168. arXiv:1102.1270

Jiang J, Cameron RH, Schüssler M (2014a) Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys J 791:5. https://doi.org/10.1088/0004-637X/791/1/5. arXiv:1406.5564

Jiang J, Hathaway DH, Cameron RH, Solanki SK, Gizon L, Upton L (2014b) Magnetic flux transport at the solar surface. Space Sci Rev 186:491–523. https://doi.org/10.1007/s11214-014-0083-1. arXiv:1408.3186

Jiang J, Cameron RH, Schüssler M (2015) The cause of the weak solar cycle 24. Astrophys J Lett 808:L28. https://doi.org/10.1088/2041-8205/808/1/L28. arXiv:1507.01764

Jiang J, Wang JX, Jiao QR, Cao JB (2018) Predictability of the solar cycle over one cycle. Astrophys J 863:159. https://doi.org/10.3847/1538-4357/aad197. arXiv:1807.01543

Jiang J, Song Q, Wang JX, Baranyi T (2019) Different contributions to space weather and space climate from different big solar active regions. Astrophys J 871:16. https://doi.org/10.3847/1538-4357/aaf64a. arXiv:1901.00116

Kanamaru T (2007) Van der Pol oscillator. Scholarpedia 2(1):2202. https://doi.org/10.4249/scholarpedia.2202. http://www.scholarpedia.org/article/Van_der_Pol_oscillator

Kanamaru T (2008) Duffing oscillator. Scholarpedia 3(3):6327. https://doi.org/10.4249/scholarpedia.6327. http://www.scholarpedia.org/article/Duffing_oscillator

Kane RP (1999) Prediction of the sunspot maximum of solar cycle 23 by extrapolation of spectral components. Sol Phys 189:217–224. https://doi.org/10.1023/A:1005298313886

Kane RP (2001) Did predictions of the maximum sunspot number for solar cycle 23 come true? Sol Phys 202:395–406

Kane RP (2007) Solar cycle predictions based on extrapolation of spectral components: an update. Sol Phys 246:487–493. https://doi.org/10.1007/s11207-007-9059-6

Kane RP (2008) Prediction of solar cycle maximum using solar cycle lengths. Sol Phys 248:203–209. https://doi.org/10.1007/s11207-008-9125-8

Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge

Karak BB, Cameron R (2016) Babcock–Leighton solar dynamo: the role of downward pumping and the equatorward propagation of activity. Astrophys J 832:94. https://doi.org/10.3847/0004-637X/832/1/94. arXiv:1605.06224

Karak BB, Choudhuri AR (2011) The Waldmeier effect and the flux transport solar dynamo. Mon Not R Astron Soc 410:1503–1512. https://doi.org/10.1111/j.1365-2966.2010.17531.x. arXiv:1008.0824

Karak BB, Choudhuri AR (2012) Quenching of meridional circulation in flux transport dynamo models. Sol Phys 278:137–148. https://doi.org/10.1007/s11207-012-9928-5. arXiv:1111.1540

Karak BB, Miesch M (2017) Solar cycle variability induced by tilt angle scatter in a Babcock–Leighton solar dynamo model. Astrophys J 847:69. https://doi.org/10.3847/1538-4357/aa8636. arXiv:1706.08933

Karak BB, Miesch M (2018) Recovery from Maunder-like grand minima in a Babcock–Leighton solar dynamo model. Astrophys J Lett 860:L26. https://doi.org/10.3847/2041-8213/aaca97. arXiv:1712.10130

Karak BB, Jiang J, Miesch MS, Charbonneau P, Choudhuri AR (2014) Flux transport dynamos: from kinematics to dynamics. Space Sci Rev 186:561–602. https://doi.org/10.1007/s11214-014-0099-6

Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403

Kilcik A, Anderson CNK, Rozelot JP, Ye H, Sugihara G, Ozguc A (2009) Nonlinear prediction of solar cycle 24. Astrophys J 693:1173–1177. https://doi.org/10.1088/0004-637X/693/2/1173. arXiv:0811.1708

Kilcik A, Yurchyshyn VB, Abramenko V, Goode PR, Ozguc A, Rozelot JP, Cao W (2011) Time distributions of large and small sunspot groups over four solar cycles. Astrophys J 731:30. https://doi.org/10.1088/0004-637X/731/1/30. arXiv:1111.3999

Kilcik A, Yurchyshyn VB, Ozguc A, Rozelot JP (2014) Solar cycle 24: curious changes in the relative numbers of sunspot group types. Astrophys J Lett 794:L2. https://doi.org/10.1088/2041-8205/794/1/L2

Kilcik A, Yurchyshyn V, Donmez B, Obridko VN, Ozguc A, Rozelot JP (2018) Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Sol Phys 293:63. https://doi.org/10.1007/s11207-018-1285-6. arXiv:1705.09065

Kimura H (1913) Sun-spots and faculæ, on the harmonic analysis of sun-spot relative numbers. Mon Not R Astron Soc 73:543–548B. https://doi.org/10.1093/mnras/73.7.543

Kitchatinov LL, Olemskoy SV (2011) Does the Babcock–Leighton mechanism operate on the Sun? Astron Lett 37:656–658. https://doi.org/10.1134/S0320010811080031. arXiv:1109.1351

Kitchatinov LL, Mordvinov AV, Nepomnyashchikh AA (2018) Modelling variability of solar activity cycles. Astron Astrophys 615:A38. https://doi.org/10.1051/0004-6361/201732549. arXiv:1804.02833

Kitiashvili IN (2016) Data assimilation approach for forecast of solar activity cycles. Astrophys J 831:15. https://doi.org/10.3847/0004-637X/831/1/15

Kitiashvili IN, Kosovichev AG (2008) Application of data assimilation method for predicting solar cycles. Astrophys J Lett 688:L49–L52. https://doi.org/10.1086/594999. arXiv:0807.3284

Kitiashvili IN, Kosovichev AG (2009) Nonlinear dynamical modeling of solar cycles using dynamo formulation with turbulent magnetic helicity. Geophys Astrophys Fluid Dyn 103:53–68. https://doi.org/10.1080/03091920802396518. arXiv:0807.3192

Kolláth Z, Oláh K (2009) Multiple and changing cycles of active stars. I. Methods of analysis and application to the solar cycles. Astron Astrophys 501:695–702. https://doi.org/10.1051/0004-6361/200811303. arXiv:0904.1725

Komm RW (1995) Hurst analysis of Mt. Wilson rotation measurements. Sol Phys 156:17–28. https://doi.org/10.1007/BF00669572

Komm R, Ferguson R, Hill F, Barnes G, Leka KD (2011) Subsurface vorticity of flaring versus flare-quiet active regions. Sol Phys 268:389–406. https://doi.org/10.1007/s11207-010-9552-1

Komm R, De Moortel I, Fan Y, Ilonidis S, Steiner O (2015) Sub-photosphere to solar atmosphere connection. Space Sci Rev 196:167–199. https://doi.org/10.1007/s11214-013-0023-5

Komm R, Howe R, Hill F (2017) Solar-cycle variation of subsurface-flow divergence: A proxy of magnetic activity? Sol Phys 292:122. https://doi.org/10.1007/s11207-017-1142-z

Komm R, Howe R, Hill F (2018) Subsurface zonal and meridional flow during cycles 23 and 24. Sol Phys 293:145. https://doi.org/10.1007/s11207-018-1365-7

Kopecký M (1950) Cycle de 22 ans de l’activité solaire. Bull Astron Inst Czech 2:14

Kopecký M, Ruzickova-Topolova B, Kuklin GV (1980) On the relative inhomogeneity of long-term series of sunspot indices. Bull Astron Inst Czech 31:267–283

Krivova NA, Solanki SK (2002) The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron Astrophys 394:701–706. https://doi.org/10.1051/0004-6361:20021063

Krivova NA, Solanki SK, Beer J (2002) Was one sunspot cycle in the 18th century really lost? Astron Astrophys 396:235–242. https://doi.org/10.1051/0004-6361:20021340

Kurths J, Ruzmaikin AA (1990) On forecasting the sunspot numbers. Sol Phys 126:407–410. https://doi.org/10.1007/BF00153060

Kuzanyan K, Obridko VN, Kotlyarov OL, Loskutov AY, Istomin IA (2008) Predictions of the magnitude of the forthcoming solar cycles using knowledge on the solar dynamo and singular spectrum analysis. In: Peter H (ed) 12th European solar physics meeting (ESPM-12). KIS, Freiburg, pp 2–69

Labonville F, Charbonneau P, Lemerle A (2019) A dynamo-based forecast of solar cycle 25. Sol Phys 294(6):82. https://doi.org/10.1007/s11207-019-1480-0

Lantos P (2000) Prediction of the maximum amplitude of solar cycles using the ascending inflexion point. Sol Phys 196:221–225. https://doi.org/10.1023/A:1005219818200

Le Mouël JL, Lopes F, Courtillot V (2017) Identification of Gleissberg cycles and a rising trend in a 315-year-long series of sunspot numbers. Sol Phys 292:43. https://doi.org/10.1007/s11207-017-1067-6

Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701. https://doi.org/10.1029/2008GL034864

Lefèvre L, Clette F (2011) A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron Astrophys 536:L11. https://doi.org/10.1051/0004-6361/201118034

Leighton RB (1969) A magneto-kinematic model of the solar cycle. Astrophys J 156:1. https://doi.org/10.1086/149943

Lemerle A, Charbonneau P (2017) A coupled 2 $$\times$$ 2D Babcock–Leighton solar dynamo model. II. Reference dynamo solutions. Astrophys J 834:133. https://doi.org/10.3847/1538-4357/834/2/133. arXiv:1606.07375

Lemerle A, Charbonneau P, Carignan-Dugas A (2015) A coupled $$2\times 2$$D Babcock–Leighton solar dynamo model. I. Surface magnetic flux evolution. Astrophys J 810:78. https://doi.org/10.1088/0004-637X/810/1/78. arXiv:1511.08548

Leussu R, Usoskin IG, Arlt R, Mursula K (2016) Properties of sunspot cycles and hemispheric wings since the 19th century. Astron Astrophys 592:A160. https://doi.org/10.1051/0004-6361/201628335

Leussu R, Usoskin IG, Senthamizh Pavai V, Diercke A, Arlt R, Denker C, Mursula K (2017) Wings of the butterfly: sunspot groups for 1826–2015. Astron Astrophys 599:A131. https://doi.org/10.1051/0004-6361/201629533

Levy EH, Boyer D (1982) Oscillating dynamo in the presence of a fossil magnetic field—the solar cycle. Astrophys J Lett 254:L19–L22. https://doi.org/10.1086/183748

Li J, Ulrich RK (2012) Long-term measurements of sunspot magnetic tilt angles. Astrophys J 758:115. https://doi.org/10.1088/0004-637X/758/2/115. arXiv:1209.1642

Li KJ, Yun HS, Gu XM (2001) On long-term predictions of the maximum sunspot numbers of solar cycles 21 to 23. Astron Astrophys 368:285–291. https://doi.org/10.1051/0004-6361:20000547

Li KJ, Irie M, Wang J, Xiong S, Yun H, Liang H, Zhan L, Zhao H (2002) Activity cycle of polar faculae. Publ Astron Soc Japan 54:787–792. https://doi.org/10.1093/pasj/54.5.787

Li KJ, Gao PX, Su TW (2005) The Schwabe and Gleissberg periods in the Wolf sunspot numbers and the group sunspot numbers. Sol Phys 229:181–198. https://doi.org/10.1007/s11207-005-5001-y

Li KJ, Feng W, Li FY (2015) Predicting the maximum amplitude of solar cycle 25 and its timing. J Atmos Sol-Terr Phys 135:72–76. https://doi.org/10.1016/j.jastp.2015.09.010

Liang ZC, Gizon L, Birch AC, Duvall TL, Rajaguru SP (2018) Solar meridional circulation from twenty-one years of SOHO/MDI and SDO/HMI observations. Helioseismic travel times and forward modeling in the ray approximation. Astron Astrophys 619:A99. https://doi.org/10.1051/0004-6361/201833673. arXiv:1808.08874

Lin CH (2014) A statistical study of the subsurface structure and eruptivity of solar active regions. Astrophys Space Sci 352:361–371. https://doi.org/10.1007/s10509-014-1931-x. arXiv:1512.07007

Lin CH, Chou DY (2018) Solar-cycle variations of meridional flows in the solar convection zone using helioseismic methods. Astrophys J 860:48. https://doi.org/10.3847/1538-4357/aac026

Livingston W, Penn MJ, Svalgaard L (2012) Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux. Astrophys J Lett 757:L8. https://doi.org/10.1088/2041-8205/757/1/L8

Lockwood M (2001) Long-term variations in the magnetic fields of the Sun and the heliosphere: their origin, effects, and implications. J Geophys Res 106:16021–16038. https://doi.org/10.1029/2000JA000115

Lockwood M (2013) Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev Sol Phys 10:4. https://doi.org/10.12942/lrsp-2013-4

Lomb NR, Andersen AP (1980) The analysis and forecasting of the Wolf sunspot numbers. Mon Not R Astron Soc 190:723–732. https://doi.org/10.1093/mnras/190.4.723

Lopes I, Passos D (2009) Solar variability induced in a dynamo code by realistic meridional circulation variations. Sol Phys 257:1–12. https://doi.org/10.1007/s11207-009-9372-3

Lopes I, Passos D, Nagy M, Petrovay K (2014) Oscillator models of the solar cycle. Towards the development of inversion methods. Space Sci Rev 186:535–559. https://doi.org/10.1007/s11214-014-0066-2. arXiv:1407.4918

Löptien B, Birch AC, Duvall TL, Gizon L, Proxauf B, Schou J (2017) Measuring solar active region inflows with local correlation tracking of granulation. Astron Astrophys 606:A28. https://doi.org/10.1051/0004-6361/201731064. arXiv:1705.08833

Loskutov AY, Istomin IA, Kotlyarov OL, Kuzanyan KM (2001) A study of the regularities in solar magnetic activity by singular spectral analysis. Astron Lett 27:745–753. https://doi.org/10.1134/1.1415865

Love JJ, Rigler EJ (2012) Sunspot random walk and 22-year variation. Geophys Res Lett 39:L10103. https://doi.org/10.1029/2012GL051818

Makarov VI, Makarova VV (1996) Polar faculae and sunspot cycles. Sol Phys 163:267–289. https://doi.org/10.1007/BF00148001

Makarov VI, Makarova VV, Sivaraman KR (1989) Do polar faculae on the Sun predict a sunspot cycle? Sol Phys 119:45–54. https://doi.org/10.1007/BF00146211

Makarov VI, Tlatov AG, Callebaut DK, Obridko VN, Shelting BD (2001) Large-scale magnetic field and sunspot cycles. Sol Phys 198:409–421. https://doi.org/10.1023/A:1005249531228

Mandal S, Karak BB, Banerjee D (2017) Latitude distribution of sunspots: analysis using sunspot data and a dynamo model. Astrophys J 851:70. https://doi.org/10.3847/1538-4357/aa97dc. arXiv:1711.00222

Mandelbrot BB, Wallis JR (1969) On forecasting the sunspot numbers. Water Resour Res 5:321–340. https://doi.org/10.1029/WR005i002p00321

Maris G, Oncica A (2006) Solar cycle 24 forecasts. Sun and Geosphere 1(1):8–11

Martin-Belda D, Cameron RH (2016) Surface flux transport simulations: effect of inflows toward active regions and random velocities on the evolution of the Sun’s large-scale magnetic field. Astron Astrophys 586:A73. https://doi.org/10.1051/0004-6361/201527213. arXiv:1512.02541

Martin-Belda D, Cameron RH (2017) Inflows towards active regions and the modulation of the solar cycle: a parameter study. Astron Astrophys 597:A21. https://doi.org/10.1051/0004-6361/201629061. arXiv:1609.01199

Mason D, Komm R, Hill F, Howe R, Haber D, Hindman BW (2006) Flares, magnetic fields, and subsurface vorticity: a survey of GONG and MDI data. Astrophys J 645:1543–1553. https://doi.org/10.1086/503761

Maunder EW (1894) A prolonged sunspot minimum. Knowl Illus Mag Sci 17:173–176

McClintock BH, Norton AA (2013) Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol Phys 287:215–227. https://doi.org/10.1007/s11207-013-0338-0. arXiv:1305.3205

McClintock BH, Norton AA, Li J (2014) Re-examining sunspot tilt angle to include anti-Hale statistics. Astrophys J 797:130. https://doi.org/10.1088/0004-637X/797/2/130. arXiv:1412.5094

McCracken KG, Beer J (2008) The 2300 year modulation in the galactic cosmic radiation. In: Caballero R et al (eds) Proceedings of the 30th international cosmic ray conference, vol 1. UNAM, Mexico City, pp 549–552

Michelson AA (1913) Determination of periodicities by the harmonic analyzer with an application to the sun-spot cycle. Astrophys J 38:268. https://doi.org/10.1086/142033

Miesch MS, Dikpati M (2014) A three-dimensional Babcock–Leighton solar dynamo model. Astrophys J Lett 785:L8. https://doi.org/10.1088/2041-8205/785/1/L8. arXiv:1401.6557

Miesch MS, Teweldebirhan K (2016) A three-dimensional Babcock–Leighton solar dynamo model: initial results with axisymmetric flows. Adv Space Res 58:1571–1588. https://doi.org/10.1016/j.asr.2016.02.018. arXiv:1511.03613

Mininni PD, Gómez DO, Mindlin GB (2000) Stochastic relaxation oscillator model for the solar cycle. Phys Rev Lett 85:5476–5479. https://doi.org/10.1103/PhysRevLett.85.5476

Mininni PD, Gomez DO, Mindlin GB (2001) Simple model of a stochastically excited solar dynamo. Sol Phys 201:203–223. https://doi.org/10.1023/A:1017515709106

Mininni PD, Gomez DO, Mindlin GB (2002) Instantaneous phase and amplitude correlation in the solar cycle. Sol Phys 208:167–179. https://doi.org/10.1023/A:1019658530185

Moss D, Sokoloff D, Usoskin I, Tutubalin V (2008) Solar grand minima and random fluctuations in dynamo parameters. Sol Phys 250:221–234. https://doi.org/10.1007/s11207-008-9202-z. arXiv:0806.3331

MSFC (2017) Solar cycle 24 prediction. http://solarscience.msfc.nasa.gov/predict.shtml

Muñoz-Jaramillo A, Nandy D, Martens PCH, Yeates AR (2010) A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and surface flux-transport simulations. Astrophys J Lett 720:L20–L25. https://doi.org/10.1088/2041-8205/720/1/L20. arXiv:1007.1262

Muñoz-Jaramillo A, Sheeley NR, Zhang J, DeLuca EE (2012) Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys J 753:146. https://doi.org/10.1088/0004-637X/753/2/146. arXiv:1303.0345

Muñoz-Jaramillo A, Balmaceda LA, DeLuca EE (2013a) Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys Rev Lett 111(4):041106. https://doi.org/10.1103/PhysRevLett.111.041106. arXiv:1308.2038

Muñoz-Jaramillo A, Dasi-Espuig M, Balmaceda LA, DeLuca EE (2013b) Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophys J Lett 767:L25. https://doi.org/10.1088/2041-8205/767/2/L25. arXiv:1304.3151

Muraközy J, Baranyi T, Ludmány A (2016) An alternative measure of solar activity from detailed sunspot datasets. Sol Phys 291:2941–2950. https://doi.org/10.1007/s11207-016-0898-x. arXiv:1603.05870

Mursula K, Zieger B (2000) The 1.3-year variation in solar wind speed and geomagnetic activity. Adv Space Res 25:1939–1942. https://doi.org/10.1016/S0273-1177(99)00608-0

Mursula K, Usoskin IG, Kovaltsov GA (2001) Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field. Sol Phys 198:51–56. https://doi.org/10.1023/A:1005218414790

Nagovitsyn YA (1997) A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past. Astron Lett 23:742–748

Nagovitsyn YA, Nagovitsyna EY, Makarova VV (2009) The Gnevyshev–Ohl rule for physical parameters of the solar magnetic field: the 400-year interval. Astron Lett 35:564–571. https://doi.org/10.1134/S1063773709080064

Nagovitsyn YA, Pevtsov AA, Osipova AA, Tlatov AG, Miletskii EV, Nagovitsyna EY (2016) Two populations of sunspots and secular variations of their characteristics. Astron Lett 42:703–712. https://doi.org/10.1134/S1063773716090048

Nagovitsyn YA, Pevtsov AA, Osipova AA (2017) Long-term variations in sunspot magnetic field-area relation. Astron Nachr 338:26–34. https://doi.org/10.1002/asna.201613035. arXiv:1608.01132

Nagy M, Petrovay K (2013) Oscillator models of the solar cycle and the Waldmeier effect. Astron Nachr 334:964. https://doi.org/10.1002/asna.201211971. arXiv:1404.3668

Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P (2017a) The effect of “rogue” active regions on the solar cycle. Sol Phys 292:167. https://doi.org/10.1007/s11207-017-1194-0. arXiv:1712.02185

Nagy M, Petrovay K, Erdélyi R (2017b) The Atlanto-Pacific multidecadal oscillation and its imprint on the global temperature record. Climate Dyn 48:1883–1891. https://doi.org/10.1007/s00382-016-3179-3

Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J (2013) Magnetic wreaths and cycles in convective dynamos. Astrophys J 762:73. https://doi.org/10.1088/0004-637X/762/2/73. arXiv:1211.3129

Neuhäuser R, Arlt R, Richter S (2018) Reconstructed sunspot positions in the Maunder minimum based on the correspondence of Gottfried Kirch. Astron Nachr 339:219–267. https://doi.org/10.1002/asna.201813481. arXiv:1807.10241

Ng KK (2016) Prediction methods in solar sunspots cycles. Sci Rep 6:21028. https://doi.org/10.1038/srep21028

Norton AA, Gallagher JC (2010) Solar-cycle characteristics examined in separate hemispheres: phase, Gnevyshev gap, and length of minimum. Sol Phys 261:193–207. https://doi.org/10.1007/s11207-009-9479-6. arXiv:1001.3186

Norton AA, Jones EH, Liu Y (2013) How do the magnetic field strengths and intensities of sunspots vary over the solar cycle? J Phys: Conf Ser 440:012038. https://doi.org/10.1088/1742-6596/440/1/012038

Norton AA, Charbonneau P, Passos D (2014) Hemispheric coupling: comparing dynamo simulations and observations. Space Sci Rev 186:251–283. https://doi.org/10.1007/s11214-014-0100-4. arXiv:1411.7052

Obridko VN, Shelting BD (2008) On prediction of the strength of the 11-year solar cycle no. 24. Sol Phys 248:191–202. https://doi.org/10.1007/s11207-008-9138-3

Ochadlick AR Jr, Kritikos HN, Giegengack R (1993) Variations in the period of the sunspot cycle. Geophys Res Lett 20:1471–1474. https://doi.org/10.1029/93GL01593

Ogurtsov MG (2004) New evidence for long-term persistence in the Sun’s activity. Sol Phys 220:93–105. https://doi.org/10.1023/B:sola.0000023439.59453.e5

Ogurtsov MG, Lindholm M (2011) Statistical effects in the solar activity cycles during AD 1823–1996. ISRN Astron Astrophys 2011:640817. https://doi.org/10.5402/2011/640817

Ohl AI (1966) Forecast of sunspot maximum number of cycle 20. Soln Dannye 12:84

Oláh K, Kolláth Z, Granzer T, Strassmeier KG, Lanza AF, Järvinen S, Korhonen H, Baliunas SL, Soon W, Messina S, Cutispoto G (2009) Multiple and changing cycles of active stars. II. results. Astron Astrophys 501:703–713. https://doi.org/10.1051/0004-6361/200811304. arXiv:0904.1747

Oliver R, Ballester JL (1996) Rescaled range analysis of the asymmetry of solar activity. Sol Phys 169:215–224. https://doi.org/10.1007/BF00153842

Oliver R, Ballester JL (1998) Is there memory in solar activity? Phys Rev E 58:5650–5654. https://doi.org/10.1103/PhysRevE.58.5650

Osipova AA, Nagovitsyn YA (2017) The Waldmeier effect for two sunspot populations. Geomagn Aeron 57:1092–1100. https://doi.org/10.1134/S0016793217080199

Ossendrijver M (2003) The solar dynamo. Astron Astrophys Rev 11:287–367. https://doi.org/10.1007/s00159-003-0019-3

Ossendrijver AJH, Hoyng P, Schmitt D (1996) Stochastic excitation and memory of the solar dynamo. Astron Astrophys 313:938–948

Owens MJ, Lockwood M, Hawkins E, Usoskin I, Jones GS, Barnard L, Schurer A, Fasullo J (2017) The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. J Space Weather Space Clim 7(27):A33. https://doi.org/10.1051/swsc/2017034

Paluš M, Novotná D (1999) Sunspot cycle: A driven nonlinear oscillator? Phys Rev Lett 83:3406–3409. https://doi.org/10.1103/PhysRevLett.83.3406

Panchev S, Tsekov M (2007) Empirical evidences of persistence and dynamical chaos in solar terrestrial phenomena. J Atmos Sol-Terr Phys 69:2391–2404. https://doi.org/10.1016/j.jastp.2007.07.011

Parker EN (1955) Hydromagnetic dynamo models. Astrophys J 122:293–314. https://doi.org/10.1086/146087

Passos D (2012) Evolution of solar parameters since 1750 based on a truncated dynamo model. Astrophys J 744:172. https://doi.org/10.1088/0004-637X/744/2/172

Passos D, Miesch M, Guerrero G, Charbonneau P (2017) Meridional circulation dynamics in a cyclic convective dynamo. Astron Astrophys 607:A120. https://doi.org/10.1051/0004-6361/201730568. arXiv:1702.02421

Paularena KI, Szabo A, Richardson JD (1995) Coincident 1.3-year periodicities in the $$ap$$ geomagnetic index and the solar wind. Geophys Res Lett 22:3001–3004. https://doi.org/10.1029/95GL02802

Pesnell WD (2008) Predictions of solar cycle 24. Sol Phys 252:209–220. https://doi.org/10.1007/s11207-008-9252-2

Pesnell WD (2012) Solar cycle predictions (invited review). Sol Phys 281:507–532. https://doi.org/10.1007/s11207-012-9997-5

Pesnell WD (2014) Predicting solar cycle 24 using a geomagnetic precursor pair. Sol Phys 289:2317–2331. https://doi.org/10.1007/s11207-013-0470-x

Pesnell WD (2016) Predictions of solar cycle 24: How are we doing? Space Weather 14:10–21. https://doi.org/10.1002/2015SW001304

Pesnell WD, Schatten KH (2018) An early prediction of the amplitude of solar cycle 25. Sol Phys 293:112. https://doi.org/10.1007/s11207-018-1330-5

Petrie GJD (2015) Solar magnetism in the polar regions. Living Rev Sol Phys 12:5. https://doi.org/10.1007/lrsp-2015-5

Petrie GJD, Ettinger S (2017) Polar field reversals and active region decay. Space Sci Rev 210:77–108. https://doi.org/10.1007/s11214-015-0189-0

Petrie GJD, Patrikeeva I (2009) A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys J 699:871–884. https://doi.org/10.1088/0004-637X/699/1/871. arXiv:1010.6041

Petrie GJD, Petrovay K, Schatten K (2014) Solar polar fields and the 22-year activity cycle: observations and models. Space Sci Rev 186:325–357. https://doi.org/10.1007/s11214-014-0064-4

Petrovay K (1994) Theory of passive magnetic field transport. In: Rutten RJ, Schrijver CJ (eds) Solar surface magnetism, NATO ASI Series C, vol 433. Kluwer, Dordrecht, pp 415–440

Petrovay K (2000) What makes the Sun tick? The origin of the solar cycle. In: Wilson A (ed) The solar cycle and terrestrial climate, solar and space weather. ESA Special Publication, vol SP-463. ESA Publications Division, Noordwijk, p 3. arXiv:astro-ph/0010096

Petrovay K (2007) On the possibility of a bimodal solar dynamo. Astron Nachr 328:777–780. https://doi.org/10.1002/asna.200710804. arXiv:0708.2131

Petrovay K (2010a) Harmonic analysis approach to solar cycle prediction and the Waldmeier effect. In: Kosovichev A, Andrei A, Rozelot JP (eds) Solar and stellar variability: impact on earth and planets, IAU symposium, vol 264. Cambridge University Press, Cambridge, pp 150–154. https://doi.org/10.1017/S1743921309992560

Petrovay K (2010) Solar cycle prediction. Living Rev Sol Phys 7:6. https://doi.org/10.12942/lrsp-2010-6. arXiv:1012.5513

Petrovay K, Forgács-Dajka E (2002) The role of active regions in the generation of torsional oscillations. Sol Phys 205:39–52. https://doi.org/10.1023/A:1013833709489

Petrovay K, van Driel-Gesztelyi L (1997) Making sense of sunspot decay. I. Parabolic decay law and Gnevyshev–Waldmeier relation. Sol Phys 176:249–266. https://doi.org/10.1023/A:1004988123265

Petrovay K, Nagy M (2018) Rogue active regions and the inherent unpredictability of the solar dynamo. In: Banerjee D, Jiang J, Kusano K, Solanki S (eds) Long-term datasets for the understanding of solar and stellar magnetic cycles. IAU symposium, vol 340. Cambridge University Press, Cambridge, pp 307–312. https://doi.org/10.1017/S1743921318001254. arXiv:1804.03427

Petrovay K, Talafha M (2019) Optimization of surface flux transport models for the solar polar magnetic field. Astron Astrophys 632:A87. https://doi.org/10.1051/0004-6361/201936099. arXiv:1909.06125

Petrovay K, Martínez Pillet V, van Driel-Gesztelyi L (1999) Making sense of sunspot decay. II. Deviations from the mean law and plage effects. Sol Phys 188:315–330 arXiv:astro-ph/9906258

Petrovay K, Chaterjee P, Choudhuri A (2006) Helical magnetic fields in solar active regions: theory vs. observations. Publ Astron Dep Eotvos Lorand Univ 17:5

Petrovay K, Nagy M, Gerják T, Juhász L (2018) Precursors of an upcoming solar cycle at high latitudes from coronal green line data. J Atmos Sol-Terr Phys 176:15–20. https://doi.org/10.1016/j.jastp.2017.12.011. arXiv:1802.05628

Pevtsov AA, Berger MA, Nindos A, Norton AA, van Driel-Gesztelyi L (2014) Magnetic helicity, tilt, and twist. Space Sci Rev 186:285–324. https://doi.org/10.1007/s11214-014-0082-2

Pipin VV, Kosovichev AG (2011) The asymmetry of sunspot cycles and Waldmeier relations as a result of nonlinear surface-shear shaped dynamo. Astrophys J 741:1. https://doi.org/10.1088/0004-637X/741/1/1. arXiv:1105.1828

Pipin VV, Sokoloff DD (2011) The fluctuating $$\alpha$$-effect and Waldmeier relations in the nonlinear dynamo models. Phys Scripta 84(6):065903. https://doi.org/10.1088/0031-8949/84/06/065903. arXiv:1110.2255

Pipin VV, Sokoloff DD, Usoskin IG (2012) Variations of the solar cycle profile in a solar dynamo with fluctuating dynamo governing parameters. Astron Astrophys 542:A26. https://doi.org/10.1051/0004-6361/201118733. arXiv:1112.6218

Pishkalo MI (2008) Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters. Kinemat Phys Celest Bodies 24:242–247. https://doi.org/10.3103/S0884591308050036

Podladchikova T, Van der Linden R, Veronig AM (2017) Sunspot number second differences as a precursor of the following 11-year sunspot cycle. Astrophys J 850:81. https://doi.org/10.3847/1538-4357/aa93ef. arXiv:1712.05782

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

Price CP, Prichard D, Hogenson EA (1992) Do the sunspot numbers form a ‘chaotic’ set? J Geophys Res 97:19113. https://doi.org/10.1029/92JA01459

Priyal M, Banerjee D, Karak BB, Muñoz-Jaramillo A, Ravindra B, Choudhuri AR, Singh J (2014) Polar network index as a magnetic proxy for the solar cycle studies. Astrophys J Lett 793:L4. https://doi.org/10.1088/2041-8205/793/1/L4. arXiv:1407.4944

Qian B, Rasheed K (2004) Hurst exponent and financial market predictability. In: Hamza MH

(ed) Financial engineering and applications (FEA 2004). Acta Press, pp 203-209

Racine É, Charbonneau P, Ghizaru M, Bouchat A, Smolarkiewicz PK (2011) On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys J 735:46. https://doi.org/10.1088/0004-637X/735/1/46

Rangarajan GK (1998) Sunspot variability and an attempt to predict solar cycle 23 by adaptive filtering. Earth Planets Space 50:91–100. https://doi.org/10.1186/BF03352090

Rezaei R, Beck C, Schmidt W (2012) Variation in sunspot properties between 1999 and 2011 as observed with the Tenerife Infrared Polarimeter. Astron Astrophys 541:A60. https://doi.org/10.1051/0004-6361/201118635. arXiv:1203.1444

Rezaei R, Beck C, Lagg A, Borrero JM, Schmidt W, Collados M (2015) Variation in sunspot properties between 1999 and 2014. Astron Astrophys 578:A43. https://doi.org/10.1051/0004-6361/201425557

Richard JG (2004) The eight-Schwabe-cycle pulsation. Sol Phys 223:319–333. https://doi.org/10.1007/s11207-004-1165-0

Richardson JD, Paularena KI, Belcher JW, Lazarus AJ (1994) Solar wind oscillations with a 1.3 year period. Geophys Res Lett 21:1559–1560. https://doi.org/10.1029/94GL01076

Rieger E, Kanbach G, Reppin C, Share GH, Forrest DJ, Chupp EL (1984) A 154-day periodicity in the occurrence of hard solar flares? Nature 312:623–625. https://doi.org/10.1038/312623a0

Rigozo NR, Souza Echer MP, Evangelista H, Nordemann DJR, Echer E (2011) Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25. J Atmos Sol-Terr Phys 73(11–12):1294–1299. https://doi.org/10.1016/j.jastp.2010.09.005

Rouillard AP, Lockwood M, Finch I (2007) Centennial changes in the solar wind speed and in the open solar flux. J Geophys Res 112(A11):5103. https://doi.org/10.1029/2006JA012130

Ruždjak D, Brajša R, Sudar D, Skokić I, Poljančić Beljan I (2017) A relationship between the solar rotation and activity analysed by tracing sunspot groups. Sol Phys 292:179. https://doi.org/10.1007/s11207-017-1199-8. arXiv:1711.03723

Ruzmaikin A (1997) On the origin of sunspots. Astron Astrophys 319:L13–L16

Ruzmaikin A, Feynman J, Robinson P (1994) Long-term persistence of solar activity. Sol Phys 149:395–403. https://doi.org/10.1007/BF00690625

Rypdal M, Rypdal K (2012) Is there long-range memory in solar activity on timescales shorter than the sunspot period? J Geophys Res 117:A04103. https://doi.org/10.1029/2011JA017283. arXiv:1111.4787

Sarp V, Kilcik A, Yurchyshyn V, Rozelot JP, Ozguc A (2018) Prediction of solar cycle 25: a non-linear approach. Mon Not R Astron Soc 481:2981–2985. https://doi.org/10.1093/mnras/sty2470

Schatten KH, Pesnell WD (1993) An early solar dynamo prediction: cycle 23 is approximately cycle 22. Geophys Res Lett 20:2275–2278. https://doi.org/10.1029/93GL02431

Schatten KH, Sofia S (1987) Forecast of an exceptionally large even-numbered solar cycle. Geophys Res Lett 14:632–635. https://doi.org/10.1029/GL014i006p00632

Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM (1978) Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5:411–414. https://doi.org/10.1029/GL005i005p00411

Schatten KH, Myers DJ, Sofia S (1996) Solar activity forecast for solar cycle 23. Geophys Res Lett 23:605–608. https://doi.org/10.1029/96GL00451

Schmidt HU (1968) Magnetohydrodynamics of an active region. In: Kiepenheuer KO (ed) Structure and development of solar active regions, IAU symposium, vol 35. Cambridge University Press, Cambridge, pp 93–107. https://doi.org/10.1017/S0074180900021379

Schüssler M, Baumann I (2006) Modeling the Sun’s open magnetic flux. Astron Astrophys 459:945–953. https://doi.org/10.1051/0004-6361:20065871

Schüssler M, Cameron RH (2018) Origin of the hemispheric asymmetry of solar activity. Astron Astrophys 618:A89. https://doi.org/10.1051/0004-6361/201833532. arXiv:1807.10061

Senthamizh Pavai V, Arlt R, Dasi-Espuig M, Krivova NA, Solanki SK (2015) Sunspot areas and tilt angles for solar cycles 7–10. Astron Astrophys 584:A73. https://doi.org/10.1051/0004-6361/201527080. arXiv:1508.07849

Serre T, Nesme-Ribes E (2000) Nonlinear analysis of solar cycles. Astron Astrophys 360:319–330

Sheeley NR Jr (1964) Polar faculae during the sunspot cycle. Astrophys J 140:731. https://doi.org/10.1086/147966

Sheeley NR Jr (2005) Surface evolution of the Sun’s magnetic field: a historical review of the flux-transport mechanism. Living Rev Sol Phys 2:5. https://doi.org/10.12942/lrsp-2005-5

Shirai T (2004) Time variation of the solar neutrino fluxes from Super-Kamiokande data. Sol Phys 222:199–201. https://doi.org/10.1023/B:SOLA.0000043565.83411.ec

Simard C, Charbonneau P, Dubé C (2016) Characterisation of the turbulent electromotive force and its magnetically-mediated quenching in a global EULAG-MHD simulation of solar convection. Adv Space Res 58:1522–1537. https://doi.org/10.1016/j.asr.2016.03.041. arXiv:1604.01533

Singh AK, Bhargawa A (2017) An early prediction of 25th solar cycle using Hurst exponent. Astrophys Space Sci 362:199. https://doi.org/10.1007/s10509-017-3180-2

Snodgrass HB, Dailey SB (1996) Meridional motions of magnetic features in the solar photosphere. Sol Phys 163:21–42. https://doi.org/10.1007/BF00165454

Solanki SK, Krivova NA, Schüssler M, Fligge M (2002) Search for a relationship between solar cycle amplitude and length. Astron Astrophys 396:1029–1035. https://doi.org/10.1051/0004-6361:20021436

Solanki S, Inhester B, Schüssler M (2006) The solar magnetic field. Rep Prog Phys 69:563–668. https://doi.org/10.1088/0034-4885/69/3/R02

Spruit HC (2003) Origin of the torsional oscillation pattern of solar rotation. Sol Phys 213:1–21. https://doi.org/10.1023/A:1023202605379. arXiv:astro-ph/0209146

Stephenson FR, Wolfendale AW (eds) (1988) Secular solar and geomagnetic variations in the last 10,000 years. NATO ASI Series C, vol 236. Kluwer, Dordrecht. https://doi.org/10.1007/978-94-009-3011-7

Stix M (1972) Non-linear dynamo waves. Astron Astrophys 20:9

Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741. https://doi.org/10.1038/344734a0

Sun X, Hoeksema JT, Liu Y, Zhao J (2015) On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys J 798:114. https://doi.org/10.1088/0004-637X/798/2/114. arXiv:1410.8867

Svalgaard L (2016) Reconstruction of solar extreme ultraviolet flux 1740–2015. Sol Phys 291:2981–3010. https://doi.org/10.1007/s11207-016-0921-2. arXiv:1506.04408

Svalgaard L (2017) A recount of sunspot groups on Staudach’s drawings. Sol Phys 292:4. https://doi.org/10.1007/s11207-016-1023-x

Svalgaard L, Cliver EW (2005) The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength. J Geophys Res 110(A9):12103. https://doi.org/10.1029/2005JA011203

Svalgaard L, Cliver EW (2007) Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J Geophys Res 112(A11):10111. https://doi.org/10.1029/2007JA012437. arXiv:0706.0961

Svalgaard L, Schatten KH (2016) Reconstruction of the sunspot group number: the backbone method. Sol Phys 291:2653–2684. https://doi.org/10.1007/s11207-015-0815-8. arXiv:1506.00755

Svalgaard L, Duvall TL Jr, Scherrer PH (1978) The strength of the Sun’s polar fields. Sol Phys 58:225–239. https://doi.org/10.1007/BF00157268

Svalgaard L, Cliver EW, Kamide Y (2005) Sunspot cycle 24: Smallest cycle in 100 years? Geophys Res Lett 32:1104. https://doi.org/10.1029/2004GL021664

Svalgaard L, Cagnotti M, Cortesi S (2017) The effect of sunspot weighting. Sol Phys 292:34. https://doi.org/10.1007/s11207-016-1024-9

Švanda M, Kosovichev AG, Zhao J (2007) Speed of meridional flows and magnetic flux transport on the Sun. Astrophys J Lett 670:L69–L72. https://doi.org/10.1086/524059. arXiv:0710.0590

Švanda M, Kosovichev AG, Zhao J (2008) Effects of solar active regions on meridional flows. Astrophys J Lett 680:L161. https://doi.org/10.1086/589997. arXiv:0805.1789

SWPC (2009) Solar cycle 24 prediction. https://www.swpc.noaa.gov/content/solar-cycle-24-prediction-updated-may-2009

Szabo A, Lepping RP, King JH (1995) Magnetic field observations of the 1.3-year solar wind oscillations. Geophys Res Lett 22:1845–1848. https://doi.org/10.1029/95GL01737

Thompson RJ (1993) A technique for predicting the amplitude of the solar cycle. Sol Phys 148:383–388. https://doi.org/10.1007/BF00645097

Tlatov AG (2009) The minimum activity epoch as a precursor of the solar activity. Sol Phys 260:465–477. https://doi.org/10.1007/s11207-009-9451-5

Tlatov AG, Vasil’eva VV, Pevtsov AA (2010) Distribution of magnetic bipoles on the Sun over three solar cycles. Astrophys J 717:357–362. https://doi.org/10.1088/0004-637X/717/1/357

Tlatova K, Tlatov A, Pevtsov A, Mursula K, Vasil’eva V, Heikkinen E, Bertello L, Pevtsov A, Virtanen I, Karachik N (2018) Tilt of sunspot bipoles in solar cycles 15 to 24. Sol Phys 293:118. https://doi.org/10.1007/s11207-018-1337-y. arXiv:1807.07913

Tong H (1993) Non-linear time series: a dynamical system approach. Oxford University Press, Oxford

Tritakis BP (1982) Evidence of interdependence within 22-year solar cycles. Astrophys Space Sci 82:463–471. https://doi.org/10.1007/BF00651452

Tsuneta S, Ichimoto K, Katsukawa Y, Lites BW, Matsuzaki K, Nagata S, Orozco Suárez D, Shimizu T, Shimojo M, Shine RA, Suematsu Y, Suzuki TK, Tarbell TD, Title AM (2008) The magnetic landscape of the Sun’s polar region. Astrophys J 688:1374–1381. https://doi.org/10.1086/592226. arXiv:0807.4631

Turner HH (1913a) On a simple method of detecting discontinuities in a series of recorded observations, with an application to sun-spots, suggesting that they are caused by a meteor swarm. Mon Not R Astron Soc 74:82–109. https://doi.org/10.1093/mnras/74.2.82

Turner HH (1913b) Sun-spots and faculæ, on the expression of sun-spot periodicity as a Fourier sequence, in similar problems. Mon Not R Astron Soc 73:714–732. https://doi.org/10.1093/mnras/73.9.714

Turner HH (1913c) Sun-spots and faculæ, on the harmonic analysis of Wolf’s sun-spot numbers, with special reference to Mr. Kimura’s paper. Mon Not R Astron Soc 73:549–552. https://doi.org/10.1093/mnras/73.7.549

Turner DC, Ladde GS (2018) Stochastic modelling, analysis, and simulations of the solar cycle dynamic process. Astrophys J 855:108. https://doi.org/10.3847/1538-4357/aaaf1c

Udny Yule G (1927) On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer’s Sunspot Numbers. Philos Trans R Soc London, Ser A 226:267–298

Upton L, Hathaway DH (2014a) Effects of meridional flow variations on solar cycles 23 and 24. Astrophys J 792:142. https://doi.org/10.1088/0004-637X/792/2/142. arXiv:1408.0035

Upton L, Hathaway DH (2014b) Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys J 780:5. https://doi.org/10.1088/0004-637X/780/1/5. arXiv:1311.0844

Upton LA, Hathaway DH (2018) An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys Res Lett 45:8091–8095. https://doi.org/10.1029/2018GL078387. arXiv:1808.04868

Usoskin IG (2017) A history of solar activity over millennia. Living Rev Sol Phys 14:3. https://doi.org/10.1007/s41116-017-0006-9

Usoskin IG (2018) Comment on the paper by Popova, et al. On a role of quadruple component of magnetic field in defining solar activity in grand cycles. J Atmos Sol-Terr Phys 176:69–71. https://doi.org/10.1016/j.jastp.2017.09.018. arXiv:1710.05203

Usoskin IG, Mursula K, Kovaltsov GA (2001) Was one sunspot cycle lost in late xviii century? Astron Astrophys 370:L31–L34. https://doi.org/10.1051/0004-6361:20010319

Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new observational constraints. Astron Astrophys 471:301–309. https://doi.org/10.1051/0004-6361:20077704. arXiv:0706.0385

Usoskin IG, Mursula K, Arlt R, Kovaltsov GA (2009a) A solar cycle lost in 1793–1800: early sunspot observations resolve the old mystery. Astrophys J Lett 700:L154–L157. https://doi.org/10.1088/0004-637X/700/2/L154. arXiv:0907.0063

Usoskin IG, Sokoloff D, Moss D (2009b) Grand minima of solar activity and the mean-field dynamo. Sol Phys 254:345–355. https://doi.org/10.1007/s11207-008-9293-6

Usoskin IG, Arlt R, Asvestari E, Hawkins E, Käpylä M, Kovaltsov GA, Krivova N, Lockwood M, Mursula K, O’Reilly J, Owens M, Scott CJ, Sokoloff DD, Solanki SK, Soon W, Vaquero JM (2015) The Maunder minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron Astrophys 581:A95. https://doi.org/10.1051/0004-6361/201526652. arXiv:1507.05191

Usoskin IG, Kovaltsov GA, Lockwood M, Mursula K, Owens M, Solanki SK (2016) A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol Phys 291:2685–2708. https://doi.org/10.1007/s11207-015-0838-1. arXiv:1512.06421

Uwamahoro J, McKinnell L, Cilliers PJ (2009) Forecasting solar cycle 24 using neural networks. J Atmos Sol-Terr Phys 71:569–574. https://doi.org/10.1016/j.jastp.2008.12.003

Vaquero JM (2007) Historical sunspot observations: a review. Adv Space Res 40:929–941. https://doi.org/10.1016/j.asr.2007.01.087. arXiv:astro-ph/0702068

Vaquero JM, Trigo RM (2008) Can the solar cycle amplitude be predicted using the preceding solar cycle length? Sol Phys 250:199–206. https://doi.org/10.1007/s11207-008-9211-y

Vaquero JM, Kovaltsov GA, Usoskin IG, Carrasco VMS, Gallego MC (2015a) Level and length of cyclic solar activity during the Maunder minimum as deduced from the active-day statistics. Astron Astrophys 577:A71. https://doi.org/10.1051/0004-6361/201525962. arXiv:1503.07664

Vaquero JM, Nogales JM, Sánchez-Bajo F (2015b) Sunspot latitudes during the Maunder minimum: a machine-readable catalogue from previous studies. Adv Space Res 55:1546–1552. https://doi.org/10.1016/j.asr.2015.01.006. arXiv:1501.05989

Vaquero JM, Svalgaard L, Carrasco VMS, Clette F, Lefèvre L, Gallego MC, Arlt R, Aparicio AJP, Richard JG, Howe R (2016) A revised collection of sunspot group numbers. Sol Phys 291:3061–3074. https://doi.org/10.1007/s11207-016-0982-2. arXiv:1609.04882

Vigouroux A, Delachie P (1994) Sunspot numbers uncertainties and parametric representations of solar activity variations. Sol Phys 152:267–274. https://doi.org/10.1007/BF01473214

Virtanen IOI, Virtanen II, Pevtsov AA, Yeates A, Mursula K (2017) Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model. Astron Astrophys 604:A8. https://doi.org/10.1051/0004-6361/201730415

Virtanen IOI, Virtanen II, Pevtsov AA, Bertello L, Yeates A, Mursula K (2019) Reconstructing solar magnetic fields from historical observations. V. Testing the reconstruction method. Astron Astrophys 627:A11

Vitinsky YI (1963) Prognozi solnechnoi aktivnosti. Nauka, Leningrad

Vitinsky YI (1973) Tsiklichnost i prognozi solnechnoi aktivnosti. Nauka, Leningrad

Vitinsky YI, Kopecký M, Kuklin GV (1986) Statistika Pyatnoobrazovatel’noy Deyatel’nosti Solntsa. Nauka, Moscow

Vokhmyanin MV, Zolotova NV (2018) Sunspot positions and areas from observations by Galileo Galilei. Sol Phys 293:31. https://doi.org/10.1007/s11207-018-1245-1

Waldmeier M (1935) Neue Eigenschaften der Sonnenfleckenkurve. Astr Mitt Zürich 14:105–130

Waldmeier M (1961) The sunspot activity in the years 1610–1960. Schultheiss & Co., Zürich

Wang YM (2017) Surface flux transport and the evolution of the Sun’s polar fields. Space Sci Rev 210:351–365. https://doi.org/10.1007/s11214-016-0257-0

Wang YM, Sheeley NR (2009) Understanding the geomagnetic precursor of the solar cycle. Astrophys J Lett 694:L11–L15. https://doi.org/10.1088/0004-637X/694/1/L11

Wang YM, Robbrecht E, Sheeley NR (2009) On the weakening of the polar magnetic fields during solar cycle 23. Astrophys J 707:1372–1386. https://doi.org/10.1088/0004-637X/707/2/1372

Warnecke J, Rheinhardt M, Tuomisto S, Käpylä PJ, Käpylä MJ, Brandenburg A (2018) Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars. Astron Astrophys 609:A51. https://doi.org/10.1051/0004-6361/201628136. arXiv:1601.03730

Watson FT, Penn MJ, Livingston W (2014) A multi-instrument analysis of sunspot umbrae. Astrophys J 787:22. https://doi.org/10.1088/0004-637X/787/1/22. arXiv:1511.07300

Wei WWS (2005) Time series analysis: univariate and multivariate methods, 2nd edn. Addison Wesley, Reading

Weiss NO, Cattaneo F, Jones CA (1984) Periodic and aperiodic dynamo waves. Geophys Astrophys Fluid Dyn 30:305–341. https://doi.org/10.1080/03091928408219262

Whitbread T, Yeates AR, Muñoz-Jaramillo A, Petrie GJD (2017) Parameter optimization for surface flux transport models. Astron Astrophys 607:A76. https://doi.org/10.1051/0004-6361/201730689. arXiv:1708.01098

Whitbread T, Yeates AR, Muñoz-Jaramillo A (2018) How many active regions are necessary to predict the solar dipole moment? Astrophys J 863:116. https://doi.org/10.3847/1538-4357/aad17e. arXiv:1807.01617

Willamo T, Usoskin IG, Kovaltsov GA (2017) Updated sunspot group number reconstruction for 1749–1996 using the active day fraction method. Astron Astrophys 601:A109. https://doi.org/10.1051/0004-6361/201629839. arXiv:1705.05109

Willamo T, Usoskin IG, Kovaltsov GA (2018) A test of the active-day fraction method of sunspot group number calibration: dependence on the level of solar activity. Sol Phys 293:69. https://doi.org/10.1007/s11207-018-1292-7. arXiv:1803.10501

Wilmot-Smith AL, Nandy D, Hornig G, Martens PCH (2006) A time delay model for solar and stellar dynamos. Astrophys J 652:696–708. https://doi.org/10.1086/508013

Winch DE, Ivers DJ, Turner JPR, Stening RJ (2005) Geomagnetism and Schmidt quasi-normalization. Geophys J Int 160:487–504. https://doi.org/10.1111/j.1365-246X.2004.02472.x

Winter LM, Pernak RL, Balasubramaniam KS (2016) Comparing SSN index to X-ray flare and coronal mass ejection rates from solar cycles 22–24. Sol Phys 291(9–10):3011–3023. https://doi.org/10.1007/s11207-016-0901-6. arXiv:1605.00503

Wolf R (1850) Mittheilungen über die Sonnenflecken I. Astr Mitt Zürich 1:3–13

Wolf R (1861) Abstract of his latest results. Mon Not R Astron Soc 21:77. https://doi.org/10.1093/mnras/21.3.77

Wu CJ, Usoskin IG, Krivova N, Kovaltsov GA, Baroni M, Bard E, Solanki SK (2018) Solar activity over nine millennia: a consistent multi-proxy reconstruction. Astron Astrophys 615:A93. https://doi.org/10.1051/0004-6361/201731892. arXiv:1804.01302

Yeates AR (2014) Coronal magnetic field evolution from 1996 to 2012: continuous non-potential simulations. Sol Phys 289:631–648. https://doi.org/10.1007/s11207-013-0301-0. arXiv:1304.0609

Yeates AR, Muñoz-Jaramillo A (2013) Kinematic active region formation in a three-dimensional solar dynamo model. Mon Not R Astron Soc 436:3366–3379. https://doi.org/10.1093/mnras/stt1818. arXiv:1309.6342

Yeates AR, Nandy D, Mackay DH (2008) Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophys J 673:544–556. https://doi.org/10.1086/524352. arXiv:0709.1046

Yeates AR, Baker D, van Driel-Gesztelyi L (2015) Source of a prominent poleward surge during solar cycle 24. Sol Phys 290:3189–3201. https://doi.org/10.1007/s11207-015-0660-9. arXiv:1502.04854

Zaqarashvili TV, Carbonell M, Oliver R, Ballester JL (2010) Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys J 709:749–758. https://doi.org/10.1088/0004-637X/709/2/749. arXiv:0911.4591

Zeldovich YB, Ruzmaikin AA, Sokoloff DD (1984) Magnetic fields in astrophysics. Gordon & Breach, New York