Solar Water Splitting by TiO2/CdS/Co–Pi Nanowire Array Photoanode Enhanced with Co–Pi as Hole Transfer Relay and CdS as Light Absorber

Advanced Functional Materials - Tập 25 Số 35 - Trang 5706-5713 - 2015
Guanjie Ai1, Hongxing Li1, Shaopei Liu1, Rong Mo1, Jianxin Zhong1
1Hunan Key Laboratory for Micro‐Nano Energy Materials and Devices School of Physics and Optoelectronics Xiangtan University Hunan 411105 P. R. China

Tóm tắt

The cobalt phosphate water oxidation catalyst (Co–Pi WOC) stabilized, CdS sensitized TiO2 nanowire arrays for nonsacrificial solar water splitting are reported. In this TiO2/CdS/Co–Pi photoanode, the Co–Pi WOC acts as hole transfer relay to accelerate the surface water oxidation reaction, CdS serves as light absorber for wider solar spectra harvesting, and TiO2 matrix provides direct pathway for electron transport. This triple TiO2/CdS/Co–Pi hybrid photoanode exhibits much enhanced photocurrent density and negatively shifts in onset potential, resulting in 1.5 and 3.4 times improved photoconversion efficiency compared to the TiO2/CdS and TiO2 photoanode, respectively. More importantly, the TiO2/CdS/Co–Pi shows significantly improved photoelectrochemical stability compared to the TiO2/CdS electrode, with ≈72% of the initial photocurrent retained after 2 h irradiation. The reason for the promoted performance is discussed in detail based on electrochemical measurements. This work provides a new paradigm for designing 1D nanoframework/light absorber/WOC photoanode to simultaneously enhance light absorption, charge separation, and transport and surface water oxidation reaction for efficient and stable solar fuel production.

Từ khóa


Tài liệu tham khảo

10.1039/b802262n

10.1038/238037a0

10.1021/cr100243p

10.1039/c2cs35019j

10.1002/aenm.201301590

10.1039/c0ee00030b

10.1039/c3nr01577g

10.1016/j.nanoen.2013.01.010

10.1016/j.nanoen.2012.02.005

10.1039/c3nr01577g

10.1039/C4NR00856A

10.1021/cg070588m

10.1002/adfm.200902234

10.1016/j.jpowsour.2012.01.154

10.1063/1.4745881

10.1021/nl070430o

10.1002/anie.201404481

10.1016/j.solmat.2011.12.015

10.1039/c3ce42068j

10.1016/j.jpowsour.2015.01.071

10.1063/1.4901001

10.1021/jp3031754

10.1039/c0jm03818k

10.1039/c2nr31703f

10.1039/C4RA15204B

10.1021/jp204747w

10.1186/s11671-015-0886-3

10.1021/am4054332

10.1021/cr1001645

10.1039/C4CY00974F

10.1021/acs.jpcc.5b00287

10.1021/cm503887t

10.1016/j.jcat.2014.06.015

10.1016/j.jpowsour.2013.06.041

10.1021/cm303206s

10.1021/jacs.5b00256

10.1002/adfm.201102966

10.1021/ja900023k

10.1021/ja510442p

10.1039/C4EE02869D

10.1021/ja106102b

10.1039/c1ee02444b

10.1039/C4EE02869D

10.1021/cm1019469

10.1002/adma.201202582

10.1039/C5NR00863H

10.1002/adfm.201301889

10.1021/ja908730h

10.1073/pnas.0910203106

10.1016/j.nanoen.2014.02.008

10.1002/adfm.201500383

10.1039/c0ee00743a