Solar Surface Convection

Springer Science and Business Media LLC - Tập 6 - Trang 1-117 - 2009
Åke Nordlund1,2, Robert F. Stein3, Martin Asplund4
1JILA, University of Colorado, Boulder, USA
2Niels Bohr Institute, University of Copenhagen, København Ø, Denmark
3Physics and Astronomy Department, Michigan State University, East Lansing, USA
4Max Planck Institute for Astrophysics, Garching, Germany

Tóm tắt

We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface. The properties of convection at the main energy carrying (granular) scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc.) of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties. At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation) scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation. Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with far-reaching consequences, not the least for helioseismology. Convection in the solar surface layers is also of great importance for helioseismology in other ways; excitation of the wave spectrum occurs primarily in these layers, and convection influences the size of global wave cavity and, hence, the mode frequencies. On local scales convection modulates wave propagation, and supercomputer convection simulations may thus be used to test and calibrate local helioseismic methods. We also discuss the importance of near solar surface convection for the structure and evolution of magnetic patterns: faculae, pores, and sunspots, and briefly address the question of the importance or not of local dynamo action near the solar surface. Finally, we discuss the importance of near solar surface convection as a driver for chromospheric and coronal heating.

Tài liệu tham khảo

Abbett, W.P., 2007, “The Magnetic Connection between the Convection Zone and Corona in the Quiet Sun”, Astrophys. J., 665, 1469–1488. [DOI], [ADS] (Cited on page 87.) Abbett, W.P., Beaver, M., Davids, B., Georgobiani, D., Rathbun, P. and Stein, R.F., 1997, “Solar Convection: Comparison of Numerical Simulations and Mixing Length Theory”, Astrophys. J., 480, 395. [DOI], [ADS] (Cited on page 34.) Allen, M.S. and Musman, S., 1973, “The Location of Exploding Granules”, Solar Phys., 32, 311–314. [DOI], [ADS] (Cited on page 23.) Allende Prieto, C. and García López, R.J., 1998, “Fe i line shifts in the optical spectrum of the Sun”, Astron. Astrophys. Suppl., 129, 41–44. [ADS], [astro-ph/9710066] (Cited on page 47.) Allende Prieto, C., Lambert, D.L. and Asplund, M., 2001, “The Forbidden Abundance of Oxygen in the Sun”, Astrophys. J. Lett., 556, L63–L66. [DOI], [ADS], [astro-ph/0106360] (Cited on pages 42, 47, 51, 52, and 53.) Allende Prieto, C., Lambert, D.L. and Asplund, M., 2002, “A Reappraisal of the Solar Photospheric C/O Ratio”, Astrophys. J. Lett., 573, L137–L140. [DOI], [ADS], [astro-ph/0206089] (Cited on pages 42 and 47.) Allende Prieto, C., Asplund, M. and Fabiani Bendicho, P., 2004, “Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations”, Astron. Astrophys., 423, 1109–1117. [DOI], [ADS], [astro-ph/0405154] (Cited on pages 42 and 54.) Altrock, R.C., 1968, “A New Method for the Analysis of Equivalent Widths and its Application to Solar Photospheric Oxygen”, Solar Phys., 5, 260–280. [DOI], [ADS] (Cited on page 51.) Anders, E. and Grevesse, N., 1989, “Abundances of the elements: Meteoritic and solar”, Geochim. Cosmochim. Acta, 53, 197–214. [DOI], [ADS] (Cited on pages 49, 51, 55, and 57.) Asensio Ramos, A., Trujillo Bueno, J., Carlsson, M. and Cernicharo, J., 2003, “Nonequilibrium CO Chemistry in the Solar Atmosphere”, Astrophys. J. Lett., 588, L61–L64. [DOI], [ADS], [astroph/0303460] (Cited on page 49.) Asplund, M., 2000, “Line formation in solar granulation. III. The photospheric Si and meteoritic Fe abundances”, Astron. Astrophys., 359, 755–758. [ADS], [astro-ph/0005322] (Cited on pages 42, 47, and 56.) Asplund, M., 2004, “Line formation in solar granulation. V. Missing UV-opacity and the photospheric Be abundance”, Astron. Astrophys., 417, 769–774. [DOI], [ADS], [astro-ph/0312291] (Cited on pages 42, 47, 51, and 56.) Asplund, M., 2005, “New Light on Stellar Abundance Analyses: Departures from LTE and Homogeneity”, Annu. Rev. Astron. Astrophys., 43, 481–530. [ADS] (Cited on pages 8, 15, 42, 45, 47, 54, 55, and 56.) Asplund, M., Gustafsson, B., Kiselman, D. and Eriksson, K., 1997, “Line-blanketed model atmospheres for R Coronae Borealis stars and hydrogen-deficient carbon stars”, Astron. Astrophys., 318, 521–534. [ADS] (Cited on pages 48 and 50.) Asplund, M., Ludwig, H.-G., Nordlund, Å. and Stein, R.F., 2000a, “The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation”, Astron. Astrophys., 359, 669–681. [ADS], [astro-ph/0005319] (Cited on pages 15, 42, and 47.) Asplund, M., Nordlund, Å., Trampedach, R., Allende Prieto, C. and Stein, R.F., 2000b, “Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries”, Astron. Astrophys., 359, 729–742. [ADS], [astro-ph/0005320] (Cited on pages 13, 15, 42, 43, 44, 47, 53, 55, and 58.) Asplund, M., Nordlund, Å., Trampedach, R. and Stein, R.F., 2000c, “Line formation in solar granulation. II. The photospheric Fe abundance”, Astron. Astrophys., 359, 743–754. [ADS], [astro-ph/0005321] (Cited on pages 42, 47, 55, and 56.) Asplund, M., Carlsson, M. and Botnen, A.V., 2003, “Multi-level 3D non-LTE computations of lithium lines in the metal-poor halo stars HD 140283 and HD 84937”, Astron. Astrophys., 399, L31–L34. [DOI], [ADS], [astro-ph/0302406] (Cited on pages 42 and 47.) Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C. and Kiselman, D., 2004, “Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance”, Astron. Astrophys., 417, 751–768. [DOI], [ADS], [astro-ph/0312290] (Cited on pages 42, 47, 50, 51, 53, 54, 55, 56, 57, and 58.) Asplund, M., Grevesse, N. and Sauval, A.J., 2005a, “The Solar Chemical Composition”, in Cosmic Abundance as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, Symposium held 17–19 June, 2004 in Austin, Texas, USA, (Eds.) Barnes III, T.G., Bash, F.N., vol. 336 of ASP Conference Series, pp. 25–38, Astronomical Society of the Pacific, San Francisco. [ADS], [astro-ph/0410214] (Cited on pages 42, 47, 49, 50, 54, 56, 57, and 59.) Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C. and Blomme, R., 2005b, “Line formation in solar granulation. VI. [C I], C I, CH and C2 lines and the photospheric C abundance”, Astron. Astrophys., 431, 693–705. [DOI], [ADS], [astro-ph/0410681] (Cited on pages 42, 47, 48, 49, 50, 53, 56, and 57.) Atroshchenko, I.N. and Gadun, A.S., 1994, “Three-dimensional hydrodynamic models of solar granulation and their application to a spectral analysis problem”, Astron. Astrophys., 291, 635–656. [ADS] (Cited on page 42.) Ayres, T.R., 2008, “Solar forbidden oxygen, revisited”, Astrophys. J., 686, 731–740. [DOI], [ADS] (Cited on pages 42, 51, and 53.) Ayres, T.R., Plymate, C. and Keller, C.U., 2006, “Solar Carbon Monoxide, Thermal Profiling, and the Abundances of C, O, and Their Isotopes”, Astrophys. J. Suppl. Ser., 165, 618–651. [DOI], [ADS], [astro-ph/0606153] (Cited on pages 42, 48, 49, 55, and 58.) Badnell, N.R., Bautista, M.A., Butler, K., Delahaye, F., Mendoza, C., Palmeri, P., Zeippen, C.J. and Seaton, M.J., 2005, “Updated opacities from the Opacity Project”, Mon. Not. R. Astron. Soc., 360, 458–464. [DOI], [ADS], [astro-ph/0410744] (Cited on page 57.) Bahcall, J.N., Basu, S. and Serenelli, A.M., 2005, “What Is the Neon Abundance of the Sun?”, Astrophys. J., 631, 1281–1285. [DOI], [ADS], [astro-ph/0502563] (Cited on page 57.) Bahcall, J.N., Serenelli, A.M. and Basu, S., 2006, “10,000 Standard Solar Models: A Monte Carlo Simulation”, Astrophys. J. Suppl. Ser., 165, 400–431. [DOI], [ADS], [astro-ph/0511337] (Cited on page 57.) Balmforth, N.J., 1992, “Solar pulsational stability — III. Acoustical excitation by turbulent convection”, Mon. Not. R. Astron. Soc., 255, 639–649. [ADS] (Cited on page 64.) Balthasar, H., 1988, “The center-to-limb variation of solar spectral lines”, Astron. Astrophys. Suppl., 72, 473–495. [ADS] (Cited on page 47.) Barklem, P.S., 2007a, “Electron-impact excitation of neutral oxygen”, Astron. Astrophys., 462, 781–788. [DOI], [ADS], [astro-ph/0609684] (Cited on page 54.) Barklem, P.S., 2007b, “Non-LTE Balmer line formation in late-type spectra: effects of atomic processes involving hydrogen atoms”, Astron. Astrophys., 466, 327–337. [DOI], [ADS], [astroph/0702222] (Cited on page 58.) Barklem, P.S., Belyaev, A.K. and Asplund, M., 2003, “Inelastic H+Li and H−+Li+ collisions and non-LTE Li I line formation in stellar atmospheres”, Astron. Astrophys., 409, L1–L4. [DOI], [ADS], [astro-ph/0308170] (Cited on page 42.) Basu, S. and Antia, H.M., 2008, “Helioseismology and solar abundances”, Phys. Rep., 457, 217–283. [DOI], [ADS], [0711.4590] (Cited on pages 42 and 57.) Beck, J.G., Duvall Jr, T.L. and Scherrer, P.H., 1998a, “Long-lived giant cells detected at the surface of the Sun”, Nature, 394, 653–655. [ADS] (Cited on page 36.) Beck, J.G., Duvall Jr, T.L., Scherrer, P.H. and Hocksema, J.T., 1998b, “The Detection of Giant Velocity Cells on the Sun”, in Structure and Dynamics of the Interior of the Sun and Sun-like Stars, SOHO 6/GONG 98 Workshop, 1–4 June 1998, Boston, Massachusetts, USA, (Eds.) Korzennik, S., Wilson, A., vol. SP-418 of ESA Conference Proceedings, pp. 725–729, ESA Publications Division, Noordwijk. [ADS] (Cited on page 36.) Bellot Rubio, L.R. and Borrero, J.M., 2002, “Iron abundance in the solar photosphere. Application of a two-component model atmosphere”, Astron. Astrophys., 391, 331–337. [DOI], [ADS] (Cited on page 42.) Bellot Rubio, L.R. and Collados, M., 2003, “Understanding internetwork magnetic fields as determined from visible and infrared spectral lines”, Astron. Astrophys., 406, 357–362. [DOI], [ADS] (Cited on page 74.) Bercik, D.J., 2002, A numerical investigation of the interaction between convection and magnetic field in a solar surface layer, Ph.D. Thesis, Michigan State University, East Lansing. [ADS] (Cited on pages 83, 85, 86, 87, and 88.) Bercik, D.J., Nordlund, Å. and Stein, R.F., 2003, “Magnetoconvection and micropores”, in Local and Global Helioseismology: The Present and Future, Proceedings of SOHO 12/GONG+ 2002, 27 October–1 November 2002, Big Bear Lake, California, USA, (Ed.) Sawaya-Lacoste, H., vol. SP-517 of ESA Conference Proceedings, pp. 201–206, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 83, 85, and 86.) Berrilli, F., Consolini, G., Florio, A. and Pietropaolo, E., 2001, “Solar granulation: properties of velocity fields from THEMIS-IPM observations”, Mem. Soc. Astron. Ital., 72, 669–672. [ADS] (Cited on page 15.) Birch, A.C. and Felder, G., 2004, “Accuracy of the Born and Ray Approximations for Time-Distance Helioseismology of Flows”, Astrophys. J., 616, 1261–1264. [DOI], [ADS] (Cited on page 60.) Birch, A.C., Kosovichev, A.G., Price, G.H. and Schlottmann, R.B., 2001, “The Accuracy of the Born and Ray Approximations in Time-Distance Helioseismology”, Astrophys. J. Lett., 561, L229–L232. [DOI], [ADS] (Cited on page 60.) Birch, A.C., Gizon, L., Hindman, B.W. and Haber, D.A., 2007, “The Linear Sensitivity of Helio-seismic Ring Diagrams to Local Flows”, Astrophys. J., 662, 730–737. [DOI], [ADS] (Cited on page 36.) Blackwell, D.E., Lynas-Gray, A.E. and Smith, G., 1995, “On the determination of the solar iron abundance using Fe i lines”, Astron. Astrophys., 296, 217. [ADS] (Cited on page 55.) Bogdan, T.J., Carlsson, M., Hansteen, V.H., McMurry, A., Rosenthal, C.S., Johnson, M., Petty-Powell, S., Zita, E.J., Stein, R.F., McIntosh, S.W. and Nordlund, Å., 2003, “Waves in the Magnetized Solar Atmosphere. II. Waves from Localized Sources in Magnetic Flux Concentrations”, Astrophys. J., 599, 626–660. [DOI], [ADS] (Cited on page 60.) Böhm-Vitense, E., 1958, “Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte”, Z. Astrophys., 46, 108–143. [ADS] (Cited on pages 33 and 39.) Borrero, J.M. and Bellot Rubio, L.R., 2002, “A two-component model of the solar photosphere from the inversion of spectral lines”, Astron. Astrophys., 385, 1056–1072. [DOI], [ADS] (Cited on page 42.) Brandenburg, A. and Dobler, W., 2002, “Solar and stellar dynamos — latest developments”, Astron. Nachr., 323, 411–416. [DOI], [ADS], [astro-ph/0207393] (Cited on page 84.) Brandenburg, A., Chan, K.L., Nordlund, Å. and Stein, R.F., 2005, “Effect of the radiative background flux in convection”, Astron. Nachr., 326, 681–692. [DOI], [ADS], [astro-ph/0508404] (Cited on pages 26 and 34.) Brandt, P.N., Scharmer, G.B., Ferguson, S., Shine, R.A. and Tarbell, T.D., 1988, “Vortex flow in the solar photosphere”, Nature, 335, 238–240. [DOI], [ADS] (Cited on page 35.) Brandt, P.N., Ferguson, S., Shine, R.A., Tarbell, T.D. and Scharmer, G.B., 1991, “Variation of granulation properties on a mesogranular scale”, Astron. Astrophys., 241, 219–226. [ADS] (Cited on page 35.) Braun, D.C., Lindsey, C., Fan, Y. and Jefferies, S.M., 1992, “Local acoustic diagnostics of the solar interior”, Astrophys. J., 392, 739–745. [DOI], [ADS] (Cited on page 66.) Braun, D.C., Birch, A.C., Benson, D., Stein, R.F. and Nordlund, Å 2007, “Helioseismic Holography of Simulated Solar Convection and Prospects for the Detection of Small-Scale Subsurface Flows”, Astrophys. J., 669, 1395–1405. [DOI], [ADS], [arXiv:0708.0214] (Cited on page 62.) Bray, R.J., Loughhead, R.E. and Durrant, C.J., 1984, The Solar Granulation, Cambridge University Press, Cambridge; New York, 2nd edn. (Cited on page 8.) Brown, T.M., Bogdan, T.J., Lites, B.W. and Thomas, J.H., 1992, “Localized sources of propagating acoustic waves in the solar photosphere”, Astrophys. J. Lett., 394, L65–L68. [DOI], [ADS] (Cited on page 66.) Bruls, J.H.M.J. and Rutten, R.J., 1992, “The formation of helioseismology lines. II. Modeling of alkali resonance lines with granulation”, Astron. Astrophys., 265, 257–267. [ADS] (Cited on page 42.) Bushby, P.J., Houghton, S.M., Proctor, M.R.E. and Weiss, N.O., 2008, “Convective intensification of magnetic fields in the quiet Sun”, Mon. Not. R. Astron. Soc., 387, 698–706. [DOI], [ADS], [arXiv:0804.1238] (Cited on page 71.) Caffau, E. and Ludwig, H.-G., 2007, “The forbidden 1082 nm line of sulphur: the photospheric abundance of sulphur in the Sun and 3D effects”, Astron. Astrophys., 467, L11–L14. [DOI], [ADS], [astro-ph/0703423] (Cited on pages 42, 48, and 56.) Caffau, E., Faraggiana, R., Bonifacio, P., Ludwig, H.-G. and Steffen, M., 2007a, “Sulphur abundances from the S I near-infrared triplet at 1045 nm”, Astron. Astrophys., 470, 699–708. [DOI], [ADS], [arXiv:0704.2335] (Cited on pages 42, 48, and 56.) Caffau, E., Steffen, M., Sbordone, L., Ludwig, H.-G. and Bonifacio, P., 2007b, “The solar photospheric abundance of phosphorus: results from CO5BOLD 3D model atmospheres”, Astron. Astrophys., 473, L9–L12. [DOI], [ADS], [arXiv:0708.1607] (Cited on pages 42, 48, and 56.) Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T.R., Bonifacio, P., Cayrel, R., Freytag, B. and Plez, B., 2008a, “The photospheric solar oxygen project: I. Abundance analysis of atomic lines and influence of atmospheric models”, Astron. Astrophys., 488, 1031–1046. [DOI], [ADS], [arXiv:0805.4398] (Cited on pages 42, 48, 51, 53, 54, 58, and 59.) Caffau, E., Sbordone, L., Ludwig, H.-G., Bonifacio, P., Steffen, M. and Behara, N.T., 2008b, “The solar photospheric abundance of hafnium and thorium. Results from CO5 BOLD 3D hydrody-namic model atmospheres”, Astron. Astrophys., 483, 591–598. [DOI], [ADS], [arXiv:0803.3585] (Cited on pages 42, 48, and 56.) Cally, P.S. and Goossens, M., 2007, “Three-Dimensional MHD Wave Propagation and Conversion to Alfvén Waves near the Solar Surface. I. Direct Numerical Solution”, Solar Phys., 251, 251–261. [DOI], [ADS] (Cited on page 60.) Cameron, R., Gizon, L. and Daiffallah, K., 2007a, “SLiM: a code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere”, Astron. Nachr., 328, 313. [DOI], [ADS] (Cited on page 60.) Cameron, R., Schüssler, M., Vögler, A. and Zakharov, V., 2007b, “Radiative magnetohydrody-namic simulations of solar pores”, Astron. Astrophys., 474, 261–272. [DOI], [ADS] (Cited on page 83.) Canuto, V.M. and Mazzitelli, I., 1991, “Stellar turbulent convection: A new model and applications”, Astrophys. J., 370, 295–311. [DOI], [ADS] (Cited on page 39.) Carlsson, M., Stein, R.F., Nordlund, Å and Scharmer, G.B., 2004, “Observational Manifestations of Solar Magnetoconvection: Center-to-Limb Variation”, Astrophys. J. Lett., 610, L137–L140. [DOI], [ADS], [astro-ph/0406160] (Cited on pages 13, 24, 77, and 80.) Cattaneo, F., Hurlburt, N.E. and Toomre, J., 1990, “Supersonic convection”, Astrophys. J. Lett., 349, L63–L66. [DOI], [ADS] (Cited on page 30.) Cattaneo, F., Brummell, N.H., Toomre, J., Malagoli, A. and Hurlburt, N.E., 1991, “Turbulent compressible convection”, Astrophys. J., 370, 282–294. [DOI], [ADS] (Cited on page 11.) Cattaneo, F., Lenz, D. and Weiss, N., 2001, “On the Origin of the Solar Mesogranulation”, Astrophys. J. Lett., 563, L91–L94. [DOI], [ADS] (Cited on page 35.) Cattaneo, F., Emonet, T. and Weiss, N.O., 2003, “On the interaction between convection and magnetic fields”, Astrophys. J., 588, 1183–1198. [DOI], [ADS] (Cited on page 71.) Cattaneo, F., Brummell, N.H. and Cline, K.S., 2006, “What is a flux tube? On the magnetic field topology of buoyant flux structures”, Mon. Not. R. Astron. Soc., 365, 727–734. [DOI], [ADS] (Cited on page 83.) Cauzzi, G., Ramos, A.A., Reardon, K.P. and Janssen, K., 2006, “Comparison of spatially and spectrally resolved solar data with numerical simulations”, Proc. IAU, 2, 138–143. [DOI], [ADS] (Cited on page 44.) Centeno, R. and Socas-Navarro, H., 2008, “A new approach to the solar oxygen abundance problem”, Astrophys. J. Lett., 682, L61–L64. [DOI], [ADS], [arXiv:0803.0990] (Cited on pages 42, 53, and 59.) Chaplin, W.J., Houdek, G., Elsworth, Y., Gough, D.O., Isaak, G.R. and New, R., 2005, “On model predictions of the power spectral density of radial solar p modes”, Mon. Not. R. Astron. Soc., 360, 859–868. [DOI], [ADS] (Cited on page 64.) Charbonneau, P., 2005, “Dynamo Models of the Solar Cycle”, Living Rev. Solar Phys., 2, lrsp-2005-2. URL (accessed 18 July 2008): http://www.livingreviews.org/lrsp-2005-2 (Cited on page 84.) Charbonnel, C. and Talon, S., 2005, “Influence of Gravity Waves on the Internal Rotation and Li Abundance of Solar-Type Stars”, Science, 309, 2189–2191. [DOI], [ADS], [astro-ph/0511265] (Cited on page 57.) Cheung, M.C.M., Schüssler, M. and Moreno-Insertis, F., 2007, “Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures”, Astron. Astrophys., 467, 703–719. [DOI], [ADS], [astro-ph/0702666] (Cited on page 81.) Christensen-Dalsgaard, J., Däppen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes Jr, E.J., Rogers, F.J., Roxburgh, I.W., Thompson, M.J. and Ulrich, R.K., 1996, “The Current State of Solar Modeling”, Science, 272, 1286–1292. [DOI], [ADS] (Cited on page 69.) Cram, L.E., Durney, B.R. and Guenther, D.B., 1983, “Preliminary observations of velocity fields at the solar poles”, Astrophys. J., 267, 442–454. [DOI], [ADS] (Cited on page 36.) Danilovic, S., Gandorfer, A., Lagg, A., Schuüssler, M., Solanki, S.K., Vögler, A., Katsukawa, Y. and Tsuneta, S., 2008, “The intensity contrast of solar granulation: comparing Hinode SP results with MHD simulations”, Astron. Astrophys., 484, L17–L20. [DOI], [ADS], [arXiv:0804.4230] (Cited on page 16.) Däppen, W., Mihalas, D., Hummer, D.G. and Mihalas, B.W., 1988, “The equation of state for stellar envelopes. III. Thermodynamic quantities”, Astrophys. J., 332, 261–270. [DOI], [ADS] (Cited on page 14.) Dawes, W.R., 1864, “Results of some recent Observations of the Solar Surface, with Remarks”, Mon. Not. R. Astron. Soc., 24, 161. [ADS] (Cited on page 15.) De Pontieu, B., Carlsson, M., Stein, R., Rouppe van der Voort, L., Löfdahl, M., van Noort, M., Nordlund, Å. and Scharmer, G., 2006, “Rapid Temporal Variability of Faculae: High-Resolution Observations and Modeling”, Astrophys. J., 646, 1405–1420. [DOI], [ADS] (Cited on page 80.) Deinzer, W., Hensler, G., Schuüssler, M. and Weisshaar, E., 1984, “Model calculations of magnetic flux tubes. II. Stationary results for solar magnetic elements”, Astron. Astrophys., 139, 435. [ADS] (Cited on page 84.) Del Moro, D., 2004, “Solar granulation properties derived from three different time series”, Astron. Astrophys., 428, 1007–1015. [DOI], [ADS] (Cited on page 15.) Del Moro, D., Berrilli, F., Duvall Jr, T.L. and Kosovichev, A.G., 2004, “Dynamics and Structure of Supergranulation”, Solar Phys., 221, 23–32. [DOI], [ADS] (Cited on page 36.) Delahaye, F. and Pinsonneault, M.H., 2006, “The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors”, Astrophys. J., 649, 529–540. [DOI], [ADS], [astro-ph/0511779] (Cited on page 57.) Deng, L. and Xiong, D.R., 2008, “How to define the boundaries of a convective zone, and how extended is overshooting?”, Mon. Not. R. Astron. Soc., 386, 1979–1989. [DOI], [ADS], [arXiv:0707.0924] (Cited on page 34.) DeRosa, M.L. and Toomre, J., 1998, “Correlation Tracking of Mesogranules from SOI-MDI Doppler Images to Reveal Supergranular Flow Fields”, in Structure and Dynamics of the Interior of the Sun and Sun-like Stars, SOHO 6/GONG 98 Workshop, 1–4 June 1998, Boston, Massachusetts, USA, (Ed.) Korzennik, S., vol. SP-418 of ESA Conference Proceedings, pp. 753–758, ESA Publications Division, Noordwijk, The Netherlands. [ADS] (Cited on pages 35 and 36.) DeRosa, M.L. and Toomre, J., 2004, “Evolution of Solar Supergranulation”, Astrophys. J., 616, 1242–1260. [DOI], [ADS] (Cited on pages 35 and 36.) DeRosa, M.L., Gilman, P.A. and Toomre, J., 2002, “Solar Multiscale Convection and Rotation Gradients Studied in Shallow Spherical Shells”, Astrophys. J., 581, 1356–1374. [DOI], [ADS], [astro-ph/0209054] (Cited on page 37.) Deubner, F.-L., 1971, “Some Properties of Velocity Fields in the Solar Photosphere. III: Oscillatory and Supergranular Motions as a Function of Height”, Solar Phys., 17, 6–20. [DOI], [ADS] (Cited on page 36.) Deubner, F.-L., 1989, “Mesogranulation: a convective phenomenon”, Astron. Astrophys., 216, 259–264. [ADS] (Cited on page 35.) Deubner, F.L. and Mattig, W., 1975, “New observations of the granular intensity fluctuations”, Astron. Astrophys., 45, 167–171. [ADS] (Cited on page 16.) Domínguez Cerdeña, I., Sánchez Almeida, J. and Kneer, F., 2003, “Inter-network magnetic fields observed with sub-arcsec resolution”, Astron. Astrophys., 407, 741–757. [DOI], [ADS], [astroph/0306329] (Cited on pages 72 and 74.) Domínguez Cerdeña, I., Almeida, J.S. and Kneer, F., 2006a, “Quiet Sun Magnetic Fields from Simultaneous Inversions of Visible and Infrared Spectropolarimetric Observations”, Astrophys. J., 646, 1421–1435. [DOI], [ADS], [astro-ph/0604381] (Cited on page 75.) Domínguez Cerdeña, I., Sánchez Almeida, J. and Kneer, F., 2006b, “The Distribution of Quiet Sun Magnetic Field Strengths from 0 to 1800 G”, Astrophys. J., 636, 496–509. [DOI], [ADS], [astro-ph/0509243] (Cited on page 75.) Domínguez Cerdeña, I., Sánchez Almeida, J. and Kneer, F., 2006c, “The Distribution of Quiet Sun Magnetic Field Strengths from 0 to 1800 G”, Astrophys. J., 636, 496–509. [DOI], [ADS] (Cited on page 74.) Dorch, S.B.F. and Nordlund, Å., 2000, “The Solar Dynamo: Flux Pumping by Stratified Convection”, in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference: 25–29 September 2000, Instituto de Astrofisica de Canarias, Santa Cruz de Tenerife, Tenerife, Spain, (Ed.) Wilson, A., vol. SP-463 of ESA Conference Proceedings, pp. 305–308, ESA Publications Division, Nordwijk. [ADS] (Cited on page 81.) Dorch, S.B.F. and Nordlund, Å., 2001, “On the transport of magnetic fields by solar-like stratified convection”, Astron. Astrophys., 365, 562–570. [DOI], [ADS] (Cited on page 81.) Drake, J.J. and Testa, P., 2005, “The ‘solar model problem’ solved by the abundance of neon in nearby stars”, Nature, 436, 525–528. [DOI], [ADS], [astro-ph/0506182] (Cited on page 57.) Dravins, D., 1982, “Photospheric spectrum line asymmetries and wavelength shifts”, Annu. Rev. Astron. Astrophys., 20, 61–89. [DOI], [ADS] (Cited on pages 15 and 47.) Dravins, D., 1990, “Stellar granulation. VI. Four-component models and non-solar-type stars”, Astron. Astrophys., 228, 218–230. [ADS] (Cited on page 42.) Dravins, D. and Nordlund, Å, 1990a, “Stellar granulation. IV. Line formation in inhomogeneous stellar photospheres”, Astron. Astrophys., 228, 184. [ADS] (Cited on pages 42, 44, and 47.) Dravins, D. and Nordlund, Å, 1990b, “Stellar granulation. V. Synthetic spectral lines in disk integrated starlight”, Astron. Astrophys., 228, 203. [ADS] (Cited on pages 42 and 47.) Dravins, D., Lindegren, L. and Nordlund, Å., 1981, “Solar Granulation: Influence of Convection on Spectral Line Asymmetries and Wavelength Shifts”, Astron. Astrophys., 96, 345–364. [ADS] (Cited on pages 15, 42, 44, and 47.) D’Silva, S., 1998, “‘Dispersion’ in Time-Distance Heloseismology”, Astrophys. J. Lett., 499, L211–L214. [DOI], [ADS] (Cited on page 60.) Emonet, T. and Cattaneo, F., 2001, “Small-Scale Photospheric Fields: Observational Evidence and Numerical Simulations”, Astrophys. J. Lett., 560, L197–L200. [DOI], [ADS] (Cited on pages 71 and 84.) Esteban, C., García-Rojas, J., Peimbert, M., Peimbert, A., Ruiz, M.T., Rodríguez, M. and Carigi, L., 2005, “Carbon and Oxygen Galactic Gradients: Observational Values from H II Region Recombination Lines”, Astrophys. J. Lett., 618, L95–L98. [DOI], [ADS], [astro-ph/0408397] (Cited on page 57.) Fabbian, D., Asplund, M., Carlsson, M. and Kiselman, D., 2006, “The non-LTE line formation of neutral carbon in late-type stars”, Astron. Astrophys., 458, 899–914. [DOI], [ADS], [astroph/0608284] (Cited on page 49.) Fabbian, D., Asplund, M., Barklem, P.S., Carlsson, M. and Kiselman, D., 2009, “Neutral oxygen spectral line formation revisited with new collisional data: large departures from LTE at low metallicity”, Astron. Astrophys., accepted. [ADS], [arXiv:0902.4472] (Cited on page 54.) Featherstone, N., Haber, D.A., Hindman, B.W. and Toomre, J., 2006, “Helioseismic Probing of Giant-Cell Convection”, Bull. Am. Astron. Soc., 38, 257. [ADS] (Cited on page 36.) Featherstone, N.A., Hindman, B.W., Haber, D.A. and Toomre, J., 2004, “Time-Distance Helioseismology: a Fourier Transform Method and Measurement of Reynolds Stresses”, in Helio- and Asteroseismology: Towards a Golden Future, Proceedings of the SOHO 14/GONG 2004 Workshop, 12–16 July 2004, New Haven, Connecticut, USA, (Ed.) Danesy, D., vol. SP-559 of ESA Conference Proceedings, pp. 428–431, ESA Publications Division, Noordwijk. [ADS] (Cited on page 36.) Fontenla, J.M., Balasubramaniam, K.S. and Harder, J., 2007, “Semiempirical Models of the Solar Atmosphere. II. The Quiet-Sun Low Chromosphere at Moderate Resolution”, Astrophys. J., 667, 1243–1257. [DOI], [ADS] (Cited on page 39.) Freytag, B., Ludwig, H.-G. and Steffen, M., 1999, “A Calibration of the Mixing-Length for SolarType Stars Based on Hydrodynamical Models of Stellar Surface Convection”, in Theory and Tests of Convection in Stellar Structure, Proceedings of a meeting held at Granada, Spain, 30 September–2 October 1998, (Eds.) Gimenez, A., Guinan, E.F., Montesinos, B., vol. 173 of ASP Conference Series, pp. 225–228, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 34.) Freytag, B., Steffen, M. and Dorch, B., 2002, “Spots on the surface of Betelgeuse — Results from new 3D stellar convection models”, Astron. Nachr., 323, 213–219. [DOI], [ADS] (Cited on page 47.) Frutiger, C., Solanki, S.K., Fligge, M. and Bruls, J.H.M.J., 2000, “Properties of the solar granulation obtained from the inversion of low spatial resolution spectra”, Astron. Astrophys., 358, 1109–1121. [ADS] (Cited on page 42.) Gadun, A.S. and Pavlenko, Y.V., 1997, “1-D and 2-D model atmospheres: iron and lithium LTE abundances in the Sun”, Astron. Astrophys., 324, 281–288. [ADS] (Cited on page 42.) Gadun, A.S., Hanslmeier, A. and Pikalov, K.N., 1997, “Bisectors and line-parameter variations over granular and intergranular regions in 2-D artificial granulation”, Astron. Astrophys., 320, 1001–1012. [ADS] (Cited on page 42.) Galloway, D.J. and Weiss, N.O., 1981, “Convection and magnetic fields in stars”, Astrophys. J., 243, 945–953. [DOI], [ADS] (Cited on page 71.) Galsgaard, K. and Nordlund, Å, 1996, “Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field”, J. Geophys. Res., 101, 13,445–13,460. [DOI], [ADS] (Cited on page 87.) Georgobiani, D., Stein, R.F. and Nordlund, Å., 2003, “What Causes p-Mode Asymmetry Reversal?”, Astrophys. J., 596, 698–701. [DOI], [ADS], [astro-ph/0205141] (Cited on pages 61 and 70.) Georgobiani, D., Stein, R.F., Nordlund, Å., Kosovichev, A.G. and Mansour, N.N., 2004, “High Degree Solar Oscillations in 3D Numerical Simulations”, in Helio- and Asteroseismology: Towards a Golden Future, Proceedings of the SOHO 14/GONG 2004 Workshop, 12–16 July 2004, New Haven, Connecticut, USA, (Ed.) Danesy, D., vol. SP-559 of ESA Conference Proceedings, pp. 267–270, ESA Publications Division, Noordwijk. [ADS] (Cited on page 36.) Georgobiani, D., Stein, R.F. and Nordlund, Å., 2006, “Spatial and Temporal Spectra of Solar Convection”, in Solar MHD Theory and Observations: A High Spatial Resolution Perspective, Proceedings of a meeting held at the NSO/Sac, Sunspot, New Mexico, USA, 18–22 July 2005, (Eds.) Leibacher, J., Stein, R.F., Uitenbroek, H., vol. 354 of ASP Conference Series, p. 109, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 64.) Georgobiani, D., Zhao, J., Kosovichev, A.G., Benson, D., Stein, R.F. and Nordlund, Å., 2007, “Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection”, Astrophys. J., 657, 1157–1161. [DOI], [ADS], [astro-ph/0608204] (Cited on pages 36, 37, and 61.) Ginet, G.P. and Simon, G.W., 1992, “On the evidence for mesogranules in solar power spectra”, Astrophys. J., 386, 359–363. [DOI], [ADS] (Cited on page 35.) Gizon, L. and Birch, A.C., 2005, “Local Helioseismology”, Living Rev. Solar Phys., 2, lrsp-2005-6. URL (accessed 18 July 2008): http://www.livingreview.org/lrsp-2005-6 (Cited on page 60.) Goldreich, P., Murray, N. and Kumar, P., 1994, “Excitation of solar p-modes”, Astrophys. J., 424, 466–479. [DOI], [ADS] (Cited on pages 62 and 64.) Gough, D.O., 1969, “The Anelastic Approximation for Thermal Convection”, J. Atmos. Sci., 26, 448–456. [ADS] (Cited on page 9.) Gray, D.F., 2005, The Observation and Analysis of Stellar Photospheres, Cambridge University Press, Cambridge; New York, 3rd edn. (Cited on pages 15, 39, 44, and 47.) Grevesse, N. and Sauval, A.J., 1998, “Standard Solar Composition”, Space Sci. Rev., 85, 161–174. [DOI], [ADS] (Cited on pages 49, 53, 54, and 57.) Grevesse, N. and Sauval, A.J., 1999, “The solar abundance of iron and the photospheric model”, Astron. Astrophys., 347, 348–354. [ADS] (Cited on page 57.) Grevesse, N., Sauval, A.J. and van Dishoeck, E.F., 1984, “An analysis of vibration-rotation lines of OH in the solar infrared spectrum”, Astron. Astrophys., 141, 10–16. [ADS] (Cited on page 51.) Grossmann-Doerth, U., Schüssler, M. and Steiner, O., 1998, “Convective intensification of solar surface magnetic fields: results of numerical experiments”, Astron. Astrophys., 337, 928–939. [ADS] (Cited on page 83.) Gudiksen, B.V. and Nordlund, A., 2005a, “An Ab Initio Approach to the Solar Coronal Heating Problem”, Astrophys. J., 618, 1020–1030. [DOI], [ADS], [astro-ph/0407266] (Cited on page 87.) Gudiksen, B.V. and Nordlund, A., 2005b, “An AB Initio Approach to Solar Coronal Loops”, Astrophys. J., 618, 1031–1038. [DOI], [ADS], [astro-ph/0407267] (Cited on page 87.) Gustafsson, B., Bell, R.A., Eriksson, K. and Nordlund, Å., 1975, “A grid of model atmospheres for metal-deficient giant stars I”, Astron. Astrophys., 42, 407–432. [ADS] (Cited on pages 14 and 47.) Guzik, J.A., Watson, L.S. and Cox, A.N., 2005, “Can Enhanced Diffusion Improve Helioseismic Agreement for Solar Models with Revised Abundances?”, Astrophys. J., 627, 1049–1056. [DOI], [ADS], [astro-ph/0502364] (Cited on page 57.) Guzik, J.A., Watson, L.S. and Cox, A.N., 2006, “Implications of revised solar abundances for helioseismology”, Mem. Soc. Astron. Ital., 77, 389. [ADS] (Cited on page 57.) Hagenaar, H.J., Schrijver, C.J. and Title, A.M., 2003, “The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s))”, Astrophys. J., 584, 1107–1119. [DOI], [ADS] (Cited on page 74.) Hanasoge, S.M., Duvall Jr, T.L. and Couvidat, S., 2007, “Validation of Helioseismology through Forward Modeling: Realization Noise Subtraction and Kernels”, Astrophys. J., 664, 1234–1243. [DOI], [ADS] (Cited on page 60.) Hansteen, V.H., 2008, “Waves and Shocks in the Solar Atmosphere”, in New Solar Physics with Solar-B Mission, Proceedings of the Sixth Solar-B Science Meeting held 8–11 November 2005 at Kyoto, Japan, (Eds.) Shibata, K., Nagata, S., Sakurai, T., vol. 369 of ASP Conference Series, pp. 193–204, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 30.) Hansteen, V.H. and Gudiksen, B., 2005, “3D Numerical Models of Quiet Sun Coronal Heating”, in Connecting Sun and Heliosphere, Proceedings of Solar Wind 11 / SOHO 16, 12–17 June 2005, Whistler, Canada, (Eds.) Fleck, B., Zurbuchen, T.H., Lacoste, H., vol. SP-592 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on page 87.) Hansteen, V.H., Carlsson, M. and Gudiksen, B., 2007, “3D Numerical Models of the Chromosphere, Transition Region, and Corona”, in The Physics of Chromospheric Plasmas, Proceedings of the conference held 9–13 October, 2006 at the University of Coimbra, Portugal, (Eds.) Heinzel, P., Dorotovic, I., Rutten, R.J., vol. 368 of ASP Conference Series, pp. 107–114, Astronomical Society of the Pacific, San Francisco. [ADS], [arXiv:0704.1511] (Cited on page 87.) Hart, A.B., 1956, “Motions in the Sun at the photospheric level. VI. Large-scale motions in the equatorial region”, Mon. Not. R. Astron. Soc., 116, 38–55. [ADS] (Cited on page 36.) Hathaway, D., Gilman, P., Harvey, J.W., Hill, F., Howard, R.B., Jones, H.P., Kasher, J., Leibacher, J.B., Pintar, J. and Simon, G.W., 1996, “GONG Observations of Solar Surface Flows”, Science, 272, 1306–1309. [ADS] (Cited on page 36.) Hathaway, D.H., Beck, J.G., Bogart, R.S., Bachmann, K.T., Khatri, G., Petitto, J.M., Han, S. and Raymond, J., 2000, “The Photospheric Convection Spectrum”, Solar Phys., 193, 299–312. [ADS] (Cited on pages 36 and 38.) Hermsen, W., 1982, “The influence of temperature inhomogeneities in the solar atmosphere on abundance determinations”, Astron. Astrophys., 111, 233–238. [ADS] (Cited on page 42.) Herschel, W., 1801, “Observations Tending to Investigate the Nature of the Sun, in Order to Find the Causes or Symptoms of Its Variable Emission of Light and Heat; With Remarks on the Use That May Possibly Be Drawn from Solar Observations”, Philos. Trans. R. Soc. London, 91, 265–318. [ADS] (Cited on page 15.) Hindman, B.W. and Brown, T.M., 1998, “Acoustic Power Maps of Solar Active Regions”, Astrophys. J., 504, 1029. [DOI], [ADS] (Cited on page 66.) Hindman, B.W., Featherstone, N.A., Haber, D.A., Musman, S. and Toomre, J., 2004a, “Comparison of Local Helioseismic Techniques Applied to MDI Doppler Data”, in Helio- and Asteroseismology: Towards a Golden Future, Proceedings of the SOHO 14/GONG 2004 Workshop, 12–16 July 2004, New Haven, Connecticut, USA, (Ed.) Danesy, D., vol. SP-559 of ESA Conference Proceedings, pp. 460–463, ESA Publications Division, Noordwijk. [ADS] (Cited on page 36.) Hindman, B.W., Gizon, L., Duvall Jr, T.L., Haber, D.A. and Toomre, J., 2004b, “Comparison of Solar Subsurface Flows Assessed by Ring and Time-Distance Analyses”, Astrophys. J., 613, 1253–1262. [DOI], [ADS] (Cited on page 36.) Hindman, B.W., Haber, D.A. and Toomre, J., 2006, “Helioseismically Determined Near-Surface Flows Underlying a Quiescent Filament”, Astrophys. J., 653, 725–732. [DOI], [ADS] (Cited on page 36.) Hirzberger, J., 2002, “On the brightness and velocity structure of solar granulation”, Astron. Astrophys., 392, 1105–1118. [DOI], [ADS] (Cited on page 15.) Hirzberger, J. and Wiehr, E., 2005, “Solar limb faculae”, Astron. Astrophys., 438, 1059–1065. [DOI], [ADS] (Cited on page 80.) Hirzberger, J., Bonet, J.A., Vázquez, M. and Hanslmeier, A., 1999, “Time Series of Solar Granulation Images. III. Dynamics of Exploding Granules and Related Phenomena”, Astrophys. J., 527, 405–414. [DOI], [ADS] (Cited on page 23.) Holweger, H., 2001, “Photospheric Abundances: Problems, Updates, Implications”, in Solar and Galactic Composition, Proceedings of a Joint Soho / Ace Workshop, Bern, Switzerland, 6–9 March 2001, (Ed.) Wimmer-Schweingruber, R.F., vol. 598 of AIP Conference Proceedings, p. 23, American Institute of Physics, Melville. [ADS], [astro-ph/0107426] (Cited on page 55.) Holweger, H. and Müller, E.A., 1974, “The photospheric barium spectrum: Solar abundance and collision broadening of Ba ii lines by hydrogen”, Solar Phys., 39, 19–30. [DOI], [ADS] (Cited on pages 39, 48, 49, 50, 51, 53, 56, 57, and 58.) Holweger, H., Kock, M. and Bard, A., 1995, “On the determination of the solar iron abundance using Fe i lines. Comments on a paper by D.E. Blackwell et al. and presentation of new results for weak lines”, Astron. Astrophys., 296, 233. [ADS] (Cited on page 55.) Hung, S.-H., Dahlen, F.A. and Nolet, G., 2001, “Wavefront healing: a banana-doughnut perspective”, Geophys. J. Int., 146, 289–312. [DOI], [ADS] (Cited on page 60.) Hurlburt, N.E., Toomre, J. and Massaguer, J.M., 1984, “Two-dimensional compressible convection extending over multiple scale heights”, Astrophys. J., 282, 557–573. [DOI], [ADS] (Cited on pages 11 and 23.) Isobe, H., Proctor, M.R.E. and Weiss, N.O., 2008, “Convection-driven Emergence of Small-Scale Magnetic Fields and their Role in Coronal Heating and Solar Wind Acceleration”, Astrophys. J. Lett., 679, L57–L60. [DOI], [ADS] (Cited on page 71.) Jacoutot, L., Kosovichev, A.G., Wray, A. and Mansour, N.N., 2008a, “Realistic Numerical Simulations of Solar Convection and Oscillations in Magnetic Regions”, Astrophys. J. Lett., 684, L51–L54. [DOI], [ADS] (Cited on page 66.) Jacoutot, L., Kosovichev, A.G., Wray, A.A. and Mansour, N.N., 2008b, “Numerical Simulation of Excitation of Solar Oscillation Modes for Different Turbulent Models”, Astrophys. J., 682, 1386–1391. [DOI], [ADS], [arXiv:0710.2317] (Cited on page 66.) Jain, R. and Haber, D., 2002, “Solar p-modes and surface magnetic fields: Is there an acoustic emission? MDI/SOHO observations”, Astron. Astrophys., 387, 1092–1099. [DOI], [ADS] (Cited on page 66.) Janssen, J., 1896, Ann. Obs. Paris, Meudon, 1, 91 (Cited on page 15.) Jefferies, S.M., Osaki, Y., Shibahashi, H., Duvall Jr, T.L., Harvey, J.W. and Pomerantz, M.A., 1994, “Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun”, Astrophys. J., 434, 795–800. [DOI], [ADS] (Cited on page 60.) Johansson, S., Litzén, U., Lundberg, H. and Zhang, Z., 2003, “Experimental f-Value and Isotopic Structure for the Ni i Line Blended with [O sc i] at 6300 Å”, Astrophys. J. Lett., 584, L107–L110. [DOI], [ADS], [astro-ph/0301382] (Cited on pages 51 and 53.) Kaisig, M. and Schröter, E.H., 1983, “The asymmetry of photospheric absorption lines. II. The asymmetry of medium-strong Fe i lines in quiet and active regions of the Sun”, Astron. Astrophys., 117, 305–313. [ADS] (Cited on page 39.) Keller, C.U., Schüssler, M., Vögler, A. and Zakharov, V., 2004, “On the Origin of Solar Faculae”, Astrophys. J. Lett., 607, L59–L62. [DOI], [ADS] (Cited on pages 77 and 80.) Khomenko, E., Centeno, R., Collados, M. and Trujillo Bueno, J., 2008, “Channeling 5 Minute Photospheric Oscillations into the Solar Outer Atmosphere through Small-Scale Vertical Magnetic Flux Tubes”, Astrophys. J. Lett., 676, L85–L88. [DOI], [ADS], [arXiv:0802.0938] (Cited on page 74.) Kim, Y.-C., Fox, P.A., Demarque, P. and Sofia, S., 1996, “Modeling Convection in the Outer Layers of the Sun: A Comparison with Predictions of the Mixing-Length Approximation”, Astrophys. J., 461, 499. [DOI], [ADS] (Cited on page 34.) Kiselman, D., 1993, “The 777 nm oxygen triplet in the Sun and solar-type stars, and its use for abundance analysis”, Astron. Astrophys., 275, 269. [ADS] (Cited on page 51.) Kiselman, D., 1994, “High-spatial-resolution solar observations of spectral lines used for abundance analysis”, Astron. Astrophys. Suppl., 104, 23–77. [ADS] (Cited on page 44.) Kiselman, D., 1997, “Formation of Li i Lines in Photospheric Granulation”, Astrophys. J. Lett., 489, L107. [DOI], [ADS], [astro-ph/9708198] (Cited on page 42.) Kiselman, D., 1998, “The 671 nm Li i line in solar granulation”, Astron. Astrophys., 333, 732–740. [ADS], [astro-ph/9802049] (Cited on pages 42 and 44.) Kiselman, D., 2001, “NLTE effects on oxygen lines”, New Astron. Rev., 45, 559–563. [ADS], [astro-ph/0010300] (Cited on page 42.) Kiselman, D. and Asplund, M., 2001, “Spatially Resolved Solar Lines as Diagnostics of NLTE Effects (CD-ROM Directory: contribs/kiselman))”, in Cool Stars, Stellar Systems and the Sun, Proceedings of the 11th Cambridge Workshop held at Puerto de la Cruz, Tenerife, Spain, 4–8 October 1999, (Eds.) García López, R.J., Rebolo, R., Zapaterio Osorio, M.R., vol. 223 of ASP Conference Series, pp. 684–690, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 44.) Kiselman, D. and Nordlund, Å., 1995, “3D non-LTE line formation in the solar photosphere and the solar oxygen abundance”, Astron. Astrophys., 302, 578. [ADS], [astro-ph/9505037] (Cited on pages 42 and 51.) Koesterke, L., Allende Prieto, C. and Lambert, D.L., 2008, “Center-to-Limb Variation of Solar Three-dimensional Hydrodynamical Simulations”, Astrophys. J., 680, 764–773. [DOI], [ADS], [arXiv:0802.2177] (Cited on page 58.) Korn, A.J., Shi, J. and Gehren, T., 2003, “Kinetic equilibrium of iron in the atmospheres of cool stars. III. The ionization equilibrium of selected reference stars”, Astron. Astrophys., 407, 691–703. [DOI], [ADS], [astro-ph/0306337] (Cited on page 56.) Krieg, J., Kneer, F., Koschinsky, M. and Ritter, C., 2000, “Granular velocities of the Sun from speckle interferometry”, Astron. Astrophys., 360, 1157–1162. [ADS] (Cited on page 15.) Krijger, J.M. and Roudier, T., 2003, “Photospheric flows measured with TRACE II. Network formation”, Astron. Astrophys., 403, 715–723. [DOI], [ADS] (Cited on page 71.) Kumar, P. and Basu, S., 1999, “Line Asymmetry of Solar p-Modes: Reversal of Asymmetry in Intensity Power Spectra”, Astrophys. J., 519, 389–395. [DOI], [ADS], [astro-ph/9808144] (Cited on page 69.) Kurucz, R., 1993, “Atomic data for opacity calculations (Kurucz CD-ROM No. 1)”, data medium, [ADS] (Cited on page 47.)) Lambert, D.L., 1978, “The abundances of the elements in the solar photosphere — VIII. Revised abundances of carbon, nitrogen and oxygen”, Mon. Not. R. Astron. Soc., 182, 249–271. [ADS] (Cited on pages 42, 48, 51, and 54.) Langangen, Ø., Carlsson, M., Rouppe van der Voort, L. and Stein, R.F., 2007, “Velocities Measured in Small-Scale Solar Magnetic Elements”, Astrophys. J., 655, 615–623. [DOI], [ADS], [astro-ph/0611741] (Cited on page 84.) Leighton, R.B., Noyes, R.W. and Simon, G.W., 1962, “Velocity Fields in the Solar Atmosphere I. Preliminary Report”, Astrophys. J., 135, 474–499. [ADS] (Cited on page 36.) Leitzinger, M., Brandt, P.N., Hanslmeier, A., Pützi, W. and Hirzberger, J., 2005, “Dynamics of solar mesogranulation”, Astron. Astrophys., 444, 245–255. [DOI], [ADS] (Cited on page 35.) Lites, B.W., Scharmer, G.B., Berger, T.E. and Title, A.M., 2004, “Three-Dimensional Structure of the Active Region Photosphere as Revealed by High Angular Resolution”, Solar Phys., 221, 65–84. [DOI], [ADS] (Cited on page 80.) Ljung, G., Nilsson, H., Asplund, M. and Johansson, S., 2006, “New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium”, Astron. Astrophys., 456, 1181–1185. [DOI], [ADS] (Cited on pages 42 and 56.) Löfdahl, M.G., Berger, T.E. and Seldin, J.H., 2001, “Two dual-wavelength sequences of highresolution solar photospheric images captured over several hours and restored by use of phase diversity”, Astron. Astrophys., 377, 1128–1135. [DOI], [ADS] (Cited on page 15.) Ludwig, H.-G. and Steffen, M., 2007, “Hydrodynamical model atmospheres and 3D spectral synthesis”, in Precision Spectroscopy in Astrophysics, Proceedings of the ESO/Lisbon/Aveiro Conference held in Aveiro, Portugal, 11–15 September 2006, (Eds.) Santos, N.C., Pasquini, L., Correia, A.C.M., pp. 133–138, Springer, Berlin; New York. [DOI], [ADS], [arXiv:0704.1176] (Cited on pages 42 and 48.) Ludwig, H.-G., Jordan, S. and Steffen, M., 1994, “Numerical simulations of convection at the surface of a ZZ Ceti white dwarf”, Astron. Astrophys., 284, 105–117. [ADS] (Cited on page 13.) Ludwig, H.-G., Freytag, B. and Steffen, M., 1999, “A calibration of the mixing-length for solartype stars based on hydrodynamical simulations. I. Methodical aspects and results for solar metallicity”, Astron. Astrophys., 346, 111–124. [ADS], [astro-ph/9811179] (Cited on page 34.) Maheswaran, M., 1969, “Effects of prescribed circulations of magnetic fields”, Mon. Not. R. Astron. Soc., 145, 197. [ADS] (Cited on page 71.) Malagoli, A., Cattaneo, F. and Brummell, N.H., 1990, “Turbulent supersonic convection in three dimensions”, Astrophys. J. Lett., 361, L33–L36. [DOI], [ADS] (Cited on page 30.) Martínez González, M.J., Collados, M. and Ruiz Cobo, B., 2006, “On the validity of the 630 nm Fe i lines for magnetometry of the internetwork quiet Sun”, Astron. Astrophys., 456, 1159–1164. [DOI], [ADS], [astro-ph/0605446] (Cited on page 74.) Martínez-Sykora, J., Hansteen, V. and Carlsson, M., 2008, “Twisted Flux Tube Emergence From the Convection Zone to the Corona”, Astrophys. J., 679, 871–888. [DOI], [ADS], [arXiv:0712.3854] (Cited on page 81.) Massaguer, J.M. and Zahn, J.-P., 1980, “Cellular convection in a stratified atmosphere”, Astron. Astrophys., 87, 315–327. [ADS] (Cited on pages 11 and 23.) Meléndez, J., 2004, “A Low Solar Oxygen Abundance from the First-Overtone OH Lines”, Astrophys. J., 615, 1042–1047. [DOI], [ADS], [astro-ph/0407366] (Cited on pages 51 and 55.) Meléndez, J. and Asplund, M., 2008, “Another forbidden solar oxygen abundance: the [O I] 5577 Å line”, Astron. Astrophys., 490, 817–821. [DOI], [ADS], [arXiv:0808.2796] (Cited on pages 42, 53, and 59.) Meunier, N., Tkaczuk, R., Roudier, T. and Rieutord, M., 2007, “Velocities and divergences as a function of supergranule size”, Astron. Astrophys., 461, 1141–1147. [DOI], [ADS] (Cited on page 36.) Mihalas, D., 1978, Stellar atmospheres, W.H. Freeman, San Francisco, 2nd edn. (Cited on page 25.) Mihalas, D., Däppen, W. and Hummer, D.G., 1988, “The equation of state for stellar envelopes. II. Algorithm and selected results”, Astrophys. J., 331, 815–825. [DOI], [ADS] (Cited on pages 14 and 47.) Mihalas, D., Hummer, D.G., Mihalas, B.W. and Däppen, W., 1990, “The equation of state for stellar envelopes. IV. Thermodynamic quantities and selected ionization fractions for six elemental mixes”, Astrophys. J., 350, 300–308. [DOI], [ADS] (Cited on page 14.) Mucciarelli, A., Caffau, E., Freytag, B., Ludwig, H.-G. and Bonifacio, P., 2008, “The solar photospheric abundance of europium. Results from CO5BOLD 3D hydrodynamical model atmospheres”, Astron. Astrophys., 484, 841–845. [DOI], [ADS], [arXiv:0803.0863] (Cited on pages 42, 48, and 56.) Müller, D.A.N., Steiner, O., Schlichenmaier, R. and Brandt, P.N., 2001, “Time-slice diagrams of solar granulation”, Solar Phys., 203, 211–232. [DOI], [ADS] (Cited on pages 15 and 37.) Muller, R., Auffret, H., Roudier, T., Vigneau, J., Simon, G.W., Frank, Z., Shine, R.A. and Title, A.M., 1992, “Evolution and advection of solar mesogranulation”, Nature, 356, 322–325. [DOI], [ADS] (Cited on pages 35 and 36.) Musman, S., 1972, “A Mechanism for the Exploding Granule Phenomenon”, Solar Phys., 26, 290–298. [DOI], [ADS] (Cited on pages 23 and 24.) Namba, O., 1986, “Evolution of ‘exploding granules’”, Astron. Astrophys., 161, 31–38. [ADS] (Cited on page 23.) Namba, O. and van Rijsbergen, R., 1977, “Evolution pattern of the exploding granules”, in Problems of Stellar Convection, Proceedings of IAU Colloquium 38, held in Nice, August 16–20, 1976, (Eds.) Spiegel, E.A., Zahn, J.-P., vol. 71 of Lecture Notes in Physics, pp. 119–125, Springer, Berlin; New York. [ADS] (Cited on pages 23 and 24.) Nasmyth, J., 1865, “The Willow Leaves”, Astron. Reg., 3, 223–224. [ADS] (Cited on page 15.) Nelson, G.D. and Musman, S., 1978, “The scale of solar granulation”, Astrophys. J. Lett., 222, L69–L72. [DOI], [ADS] (Cited on page 20.) Nesis, A., Hammer, R., Roth, M. and Schleicher, H., 2002, “Dynamics of the solar granulation. VIII. Time and space development”, Astron. Astrophys., 396, 1003–1010. [DOI], [ADS] (Cited on page 15.) Nesis, A., Hammer, R., Roth, M. and Schleicher, H., 2006, “Dynamics of the solar granulation. IX. A global approach”, Astron. Astrophys., 451, 1081–1089. [DOI], [ADS] (Cited on page 15.) Nigam, R., Kosovichev, A.G., Scherrer, P.H. and Schou, J., 1998, “Asymmetry in Velocity and Intensity Helioseismic Spectra: A Solution to a Long-standing Puzzle”, Astrophys. J. Lett., 495, L115. [DOI], [ADS] (Cited on page 69.) Nordlund, Å., 1976, “A two-component representation of stellar atmospheres with convection”, Astron. Astrophys., 50, 23–39. [ADS] (Cited on page 39.) Nordlund, Å., 1978, “Solar granulation and the nature of ‘microturbulence’”, in Astronomical Papers Dedicated to Bengt Strömgren, Proceedings of the Symposium, Copenhagen, Denmark, May 30–June 1, 1978, (Eds.) Reiz, A., Andersen, T., pp. 95–115, Copenhagen University Observatory, Copenhagen. [ADS] (Cited on page 20.) Nordlund, Å., 1982, “Numerical simulations of the solar granulation. I. Basic equations and methods”, Astron. Astrophys., 107, 1–10. [ADS] (Cited on pages 13 and 47.) Nordlund, Å., 1984, “A Re-evaluation of the Granular Δ Irms”, in Small-Scale Dynamical Processes in Quiet Stellar Atmospheres, Proceedings of the Conference held in Sunspot, New Mexico, USA, 25–29 July 1983, (Ed.) Keil, S.L., p. 174, National Solar Observatory, Sunspot, NM. [ADS] (Cited on pages 16 and 44.) Nordlund, Å., 1985a, “Solar convection”, Solar Phys., 100, 209–235. [ADS] (Cited on pages 8 and 42.) Nordlund, Å., 1985b, “NLTE spectral line formation in a three-dimensional atmosphere with velocity fields”, in Progress in Stellar Spectral Line Formation Theory, Proceedings of the NATO Advanced Research Workshop, Trieste, Italy, September 4–7, 1984, (Eds.) Beckman, J.E., Crivellari, L., vol. 152 of NATO ASI Series C, pp. 215–224, Reidel, Dordrecht; Boston. [ADS] (Cited on page 42.) Nordlund, Å. and Stein, R.F., 1991, “Granulation: Non-adiabatic Patterns and Shocks”, in Challenges to Theories of the Structure of Moderate-Mass Stars, Proceedings of a Conference held at the Institute for Theoretical Physics University of California, Santa Barbara, USA 19–22 June 1990, (Eds.) Gough, D., Toomre, J., vol. 388 of Lecture Notes in Physics, pp. 141–146, Springer, Berlin; New York. [DOI], [ADS] (Cited on pages 20 and 30.) Nordlund, Å. and Stein, R.F., 2001, “Solar Oscillations and Convection. I. Formalism for Radial Oscillations”, Astrophys. J., 546, 576–584. [DOI], [ADS], [astro-ph/0006336] (Cited on pages 62 and 63.) Nordlund, Å., Stein, R.F. and Brandenburg, A., 1996, “Supercomputer windows into the solar convection zone”, Bull. Astron. Soc. India, 24, 261. [ADS] (Cited on page 8.) November, L.J., 1980, Mesogranulation and supergranulation in the Sun, Ph.D. Thesis, University of Colorado at Boulder, Boulder. [ADS] (Cited on page 35.) November, L.J., Toomre, J., Gebbie, K.B. and Simon, G.W., 1981, “The detection of mesogranulation on the Sun”, Astrophys. J. Lett., 245, L123–L126. [DOI], [ADS] (Cited on page 35.) November, L.J., Toomre, J., Gebbie, K.B. and Simon, G.W., 1982, “Vertical flows of supergranular and mesogranular scale observed on the Sun with OSO 8”, Astrophys. J., 258, 846–859. [DOI], [ADS] (Cited on page 35.) Oda, N., 1984, “Morphological study of the solar granulation. III. The mesogranulation”, Solar Phys., 93, 243–255. [ADS] (Cited on page 35.) Ossendrijver, M., 2003, “The solar dynamo”, Astron. Astrophys. Rev., 11, 287–367. [DOI], [ADS] (Cited on page 84.) Parchevsky, K.V. and Kosovichev, A.G., 2007, “Three-dimensional Numerical Simulations of the Acoustic Wave Field in the Upper Convection Zone of the Sun”, Astrophys. J., 666, 547–558. [DOI], [ADS], [astro-ph/0612364] (Cited on page 60.) Parchevsky, K.V., Zhao, J. and Kosovichev, A.G., 2008, “Influence of Nonuniform Distribution of Acoustic Wavefield Strength on Time-Distance Helioseismology Measurements”, Astrophys. J., 678, 1498–1504. [DOI], [ADS], [arXiv:0802.3866] (Cited on page 60.) Parker, E.N., 1983, “Magnetic neutral sheets in evolving fields. II. Formation of the solar corona”, Astrophys. J., 264, 642. [DOI], [ADS] (Cited on page 84.) Parker, E.N., 1988, “Nanoflares and the solar X-ray corona”, Astrophys. J., 330, 474–479. [DOI], [ADS] (Cited on page 87.) Pecker, J.-C., 1996, “The Effects of Non-Sphericity in Diagnosis of Solar and Stellar Atmospheres”, Solar Phys., 169, 277–291. [DOI], [ADS] (Cited on page 24.) Peckover, R.S. and Weiss, N.O., 1978, “On the dynamic interaction between magnetic fields and convection”, Mon. Not. R. Astron. Soc., 182, 189–208. [ADS] (Cited on page 71.) Pereira, T., Kiselman, D. and Asplund, M., 2008, “Confronting 3D solar model atmospheres with observations”, in preparation (Cited on page 44.)) Peter, H., Gudiksen, B.V. and Nordlund, Å., 2005, “Coronal Heating Through Braiding of Magnetic Field Lines Synthesized Coronal EUV Emission and Magnetic Structure”, in Chromospheric and Coronal Magnetic Fields, Proceedings of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields, 30 August–2 September 2005, Katlenburg-Lindau, Germany, (Eds.) Innes, D.E., Lagg, A., Solanki, S.A., Danesy, D., vol. SP-596 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on page 87.) Peter, H., Gudiksen, B.V. and Nordlund, Å., 2006, “Forward Modeling of the Corona of the Sun and Solar-like Stars: From a Three-dimensional Magnetohydrodynamic Model to Synthetic Extreme-Ultraviolet Spectra”, Astrophys. J., 638, 1086–1100. [DOI], [ADS], [astro-ph/0503342] (Cited on page 87.) Petrovay, K. and Szakaly, G., 1993, “The origin of intranetwork fields: a small-scale solar dynamo”, Astron. Astrophys., 274, 543. [ADS] (Cited on page 81.) Ploner, S.R.O., Solanki, S.K. and Gadun, A.S., 2000, “Is solar mesogranulation a surface phenomenon?”, Astron. Astrophys., 356, 1050–1054. [ADS] (Cited on page 35.) Przybilla, N., Nieva, M.-F. and Butler, K., 2008, “A Cosmic Abundance Standard: Chemical Homogeneity of the Solar Neighborhood and the ISM Dust-Phase Composition”, Astrophys. J. Lett., 688, L103–L106. [DOI], [ADS], [arXiv:0809.2403] (Cited on page 57.) Puschmann, K.G., Ruiz Cobo, B., Vázquez, M., Bonet, J.A. and Hanslmeier, A., 2005, “Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures”, Astron. Astrophys., 441, 1157–1169. [DOI], [ADS] (Cited on page 15.) Rast, M.P., 1995, “On the nature of ‘exploding’ granules and granule fragmentation”, Astrophys. J., 443, 863–868. [DOI], [ADS] (Cited on page 23.) Rast, M.P., 2003, “The Scales of Granulation, Mesogranulation, and Supergranulation”, Astrophys. J., 597, 1200–1210. [DOI], [ADS] (Cited on pages 20 and 35.) Rieutord, M. and Zahn, J.-P., 1995, “Turbulent plumes in stellar convective envelopes”, Astron. Astrophys., 296, 127–138. [ADS] (Cited on page 11.) Rieutord, M., Roudier, T., Ludwig, H.-G., Nordlund, Å. and Stein, R., 2001, “Are granules good tracers of solar surface velocity fields?”, Astron. Astrophys., 377, L14–L17. [DOI], [ADS], [astro-ph/0108284] (Cited on page 35.) Rieutord, M., Ludwig, H.-G., Roudier, T., Nordlund, Å. and Stein, R., 2002, “A simulation of solar convection at supergranulation scale”, Nuovo Cimento C, 25, 523–528. [ADS], [astro-ph/0110208] (Cited on page 36.) Robinson, F.J., Demarque, P., Li, L.H., Sofia, S., Kim, Y.-C., Chan, K.L. and Guenther, D.B., 2003, “Three-dimensional convection simulations of the outer layers of the Sun using realistic physics”, Mon. Not. R. Astron. Soc., 340, 923–936. [DOI], [ADS], [astro-ph/0212296] (Cited on page 34.) Roca Cortés, T., Jiménez, A., Pallé, P.L. (GOLF and Teams), VIRGO, 1999, “Frequencies of Solar p-Modes from GOLF and VIRGO-SPM (SOHO))”, in Magnetic Fields and, Solar Processes, Proceedings of the 9th European Meeting on Solar Physics, Florence, Italy, 12–18 September, 1999, (Ed.) Wilson, A., vol. SP-448 of ESA Conference Proceedings, pp. 135–140, ESA Publications Division, Noordwijk. [ADS] (Cited on page 65.) Rogers, F.J., 1990, “A distribution function approach for effective occupation numbers and the equation of state of hydrogen plasmas”, Astrophys. J., 352, 689–697. [DOI], [ADS] (Cited on page 14.) Rogers, F.J. and Iglesias, C.A., 1998, “Opacity of Stellar Matter”, Space Sci. Rev., 85, 61–70. [DOI], [ADS] (Cited on page 14.) Rogers, F.J. and Nayfonov, A., 2002, “Updated and Expanded OPAL Equation-of-State Tables: Implications for Helioseismology”, Astrophys. J., 576, 1064–1074. [DOI], [ADS] (Cited on page 14.) Rogers, F.J., Swenson, F.J. and Iglesias, C.A., 1996, “OPAL Equation-of-State Tables for Astrophysical Applications”, Astrophys. J., 456, 902. [DOI], [ADS] (Cited on page 14.) Rosenthal, C.S., Christensen-Dalsgaard, J., Nordlund, Å., Stein, R.F. and Trampedach, R., 1999, “Convective contributions to the frequencies of solar oscillations”, Astron. Astrophys., 351, 689–700. [ADS], [astro-ph/9803206] (Cited on pages 26, 34, and 69.) Rosenthal, C.S., Bogdan, T.J., Carlsson, M., Dorch, S.B.F., Hansteen, V., McIntosh, S.W., Mc-Murry, A., Nordlund, Å. and Stein, R.F., 2002, “Waves in the Magnetized Solar Atmosphere. I. Basic Processes and Internetwork Oscillations”, Astrophys. J., 564, 508–524. [DOI], [ADS] (Cited on page 60.) Roudier, T. and Muller, R., 2004, “Relation between families of granules, mesogranules and photospheric network”, Astron. Astrophys., 419, 757–762. [DOI], [ADS] (Cited on pages 35 and 37.) Roudier, T., Malherbe, J.M., Vigneau, J. and Pfeiffer, B., 1998, “Solar mesogranule lifetime measurements”, Astron. Astrophys., 330, 1136–1144. [ADS] (Cited on page 35.) Roudier, T., Rieutord, M., Malherbe, J.M. and Vigneau, J., 1999, “Determination of horizontal velocity fields at the sun’s surface with high spatial and temporal resolution”, Astron. Astrophys., 349, 301–311. [ADS] (Cited on page 35.) Roudier, T., Eibe, M.T., Malherbe, J.M., Rieutord, M., Mein, P., Mein, N. and Faurobert, M., 2001, “Temporal height properties of the exploding granules”, Astron. Astrophys., 368, 652–661. [DOI], [ADS] (Cited on page 23.) Roudier, T., Lignières, F., Rieutord, M., Brandt, P.N. and Malherbe, J.M., 2003a, “Families of fragmenting granules and their relation to meso- and supergranular flow fields”, Astron. Astrophys., 409, 299–308. [DOI], [ADS] (Cited on page 37.) Roudier, T., Malherbe, J.M., Mein, P., Muller, R., Coutard, C., Lafon, M. and Grimaud, F., 2003b, “High spatial resolution capabilities of Doppler measurements with the Pic du Midi MSDP spectrograph”, Astron. Astrophys., 409, 793–797. [DOI], [ADS] (Cited on page 15.) Rutten, R.J., Kiselman, D., Rouppe van der Voort, L. and Plez, B., 2001, “Proxy Magnetometry of the Photosphere: Why are G-Band Bright Points so Bright?”, in Advanced Solar Polarimetry: Theory, Observation, and Instrumentation, Proceedings of the 20th Sacramento Peak Summer Workshop, held at NSO/Sac, Sunspot, New Mexico, USA, 11–15 September 2000, (Ed.) Sigwarth, M., vol. 236 of ASP Conference Series, pp. 445–452, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 77.) Rybák, J., Wöhl, H., Kucera, A., Hanslmeier, A. and Steiner, O., 2004, “Indications of shock waves in the solar photosphere”, Astron. Astrophys., 420, 1141–1152. [DOI], [ADS] (Cited on page 30.) Samadi, R. and Goupil, M.-J., 2001, “Excitation of stellar p-modes by turbulent convection. I. Theoretical formulation”, Astron. Astrophys., 370, 136–146. [DOI], [ADS], [astro-ph/0101109] (Cited on page 64.) Samadi, R., Nordlund, Å., Stein, R.F., Goupil, M.J. and Roxburgh, I., 2003a, “Numerical constraints on the model of stochastic excitation of solar-type oscillations”, Astron. Astrophys., 403, 303–312. [DOI], [ADS], [astro-ph/0303198] (Cited on page 64.) Samadi, R., Nordlund, Å., Stein, R.F., Goupil, M.J. and Roxburgh, I., 2003b, “Numerical 3D constraints on convective eddy time-correlations: Consequences for stochastic excitation of solar p modes”, Astron. Astrophys., 404, 1129–1137. [DOI], [ADS], [astro-ph/0304457] (Cited on page 64.) Sánchez Almeida, J., Asensio Ramos, A., Trujillo Bueno, J. and Cernicharo, J., 2001, “G-Band Spectral Synthesis in Solar Magnetic Concentrations”, Astrophys. J., 555, 978–989. [DOI], [ADS], [astro-ph/0103006] (Cited on page 77.) Sauval, A.J., Grevesse, N., Zander, R., Brault, J.W. and Stokes, G.M., 1984, “The pure rotation spectrum of OH and the solar oxygen abundance”, Astrophys. J., 282, 330–338. [DOI], [ADS] (Cited on page 51.) Schaffenberger, W., Wedemeyer-Böhm, S., Steiner, O. and Freytag, B., 2005, “Magnetohydro-dynamic Simulation from the Convection Zone to the Chromosphere”, in Chromospheric and Coronal Magnetic Fields, Proceedings of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields, 30 August–2 September 2005, Katlenburg-Lindau, Germany, (Eds.) Innes, D.E., Lagg, A., Solanki, S.A., Danesy, D., vol. SP-596 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 83 and 87.) Schaffenberger, W., Wedemeyer-Böhm, S., Steiner, O. and Freytag, B., 2006, “Holistic MHD-Simulation from the Convection Zone to the Chromosphere”, in Solar MHD Theory and Observations: A High Spatial Resolution Perspective, Proceedings of the 23rd Sacramento Peak Summer Workshop, held at NSO/Sac, Sunspot, New Mexico, USA, 18–22 July, 2005, (Eds.) Leibacher, J., Stein, R.F., Uitenbroek, H., vol. 354 of ASP Conference Series, pp. 345–351, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on pages 30 and 87.) Schrijver, C.J., Hagenaar, H.J. and Title, A.M., 1997a, “On the Patterns of the Solar Granulation and Supergranulation”, Astrophys. J., 475, 328. [DOI], [ADS] (Cited on page 37.) Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J. and Shine, R.A., 1997b, “Sustaining the quiet photospheric network: The balance of flux emergence, fragmentation, merging, and cancellation”, Astrophys. J., 487, 424–436. [DOI], [ADS] (Cited on page 71.) Schröter, E.H., 1957, “Zur Deutung der Rotverschiebung und der Mitte-Rand-Variation der Fraunhoferlinien bei Berücksichtigung der Temperaturschwankungen der Sonnenatmosphäre”, Z. Astrophys., 41, 141–181. [ADS] (Cited on page 39.) Schüssler, M. and Vögler, A., 2006, “Magnetoconvection in a Sunspot Umbra”, Astrophys. J. Lett., 641, L73–L76. [DOI], [ADS], [astro-ph/0603078] (Cited on page 71.) Schüssler, M., Shelyag, S., Berdyugina, S., Vögler, A. and Solanki, S.K., 2003, “Why solar magnetic flux concentrations are bright in molecular bands”, Astrophys. J. Lett., 597, L173–L176. [DOI], [ADS] (Cited on page 77.) Schwarzschild, M., 1958, Structure and Evolution of the Stars, Princeton University Press, Princeton (Cited on page 20.) Scott, P.C., Asplund, M., Grevesse, N. and Sauval, A.J., 2006, “Line formation in solar granulation. VII. CO lines and the solar C and O isotopic abundances”, Astron. Astrophys., 456, 675–688. [DOI], [ADS], [astro-ph/0605116] (Cited on pages 42, 47, 48, 49, 50, and 55.) Shchukina, N. and Trujillo Bueno, J., 2001, “The Iron Line Formation Problem in Three-dimensional Hydrodynamic Models of Solar-like Photospheres”, Astrophys. J., 550, 970–990. [DOI], [ADS] (Cited on pages 42 and 55.) Shelyag, S., Schüssler, M., Solanki, S.K., Berdyugina, S.V. and Vögler, A., 2004, “G-band spectral synthesis and diagnostics of simulated solar magneto-convection”, Astron. Astrophys., 427, 335–343. [DOI], [ADS] (Cited on page 80.) Shelyag, S., Erdélyi, R. and Thompson, M.J., 2006, “Forward Modeling of Acoustic Wave Propagation in the Quiet Solar Subphotosphere”, Astrophys. J., 651, 576–583. [DOI], [ADS] (Cited on page 60.) Shelyag, S., Erdélyi, R. and Thompson, M.J., 2007, “Forward modelling of sub-photospheric flows for time-distance helioseismology”, Astron. Astrophys., 469, 1101–1107. [DOI], [ADS], [astro-ph/0703067] (Cited on page 60.) Shine, R.A., Simon, G.W. and Hurlburt, N.E., 2000, “Supergranule and Mesogranule Evolution”, Solar Phys., 193, 313–331. [ADS] (Cited on pages 35 and 36.) Simon, G.W. and Leighton, R.B., 1964, “Velocity Fields in the Solar Atmosphere. III. Large-Scale Motions, the Chromospheric Network, and Magnetic Fields”, Astrophys. J., 140, 1120–1147. [ADS] (Cited on page 36.) Simon, G.W. and Weiss, N.O., 1968, “Supergranules and the Hydrogen Convection Zone”, Z. Astrophys., 69, 435. [ADS] (Cited on page 37.) Simon, G.W. and Weiss, N.O., 1991, “Convective structures in the Sun”, Mon. Not. R. Astron. Soc., 252, 1P–5P. [ADS] (Cited on page 23.) Simon, G.W., November, L.J., Acton, L.W., Ferguson, S.H. and Shine, R.A., 1988, “Variability of solar mesogranulation”, Adv. Space Res., 8, 169–172. [DOI], [ADS] (Cited on page 35.) Simon, G.W., Title, A.M. and Weiss, N.O., 1991a, “Simulating exploding granules and mesogranular flows”, Adv. Space Res., 11, 259–262. [DOI], [ADS] (Cited on page 23.) Simon, G.W., Title, A.M. and Weiss, N.O., 1991b, “Modeling mesogranules and exploders on the solar surface”, Astrophys. J., 375, 775–788. [DOI], [ADS] (Cited on page 23.) Simon, G.W., Title, A.M. and Weiss, N.O., 2001, “Sustaining the Sun’s Magnetic Network with Emerging Bipoles”, Astrophys. J., 561, 427–434. [DOI], [ADS] (Cited on page 71.) Skartlien, R., 2002, “Local Helioseismology as an Inverse Source-Inverse Scattering Problem”, Astrophys. J., 565, 1348–1365. [DOI], [ADS] (Cited on page 60.) Spruit, H., 1997, “Convection in stellar envelopes: a changing paradigm”, Mem. Soc. Astron. Ital., 68, 397–413. [ADS], [astro-ph/9605020] (Cited on page 8.) Spruit, H.C., 1976, “Pressure equilibrium and energy balance of small photospheric fluxtubes”, Solar Phys., 50, 269–295. [ADS] (Cited on pages 71, 77, and 80.) Spruit, H.C., 1977a, Magnetic flux tubes and transport of heat in the convection zone of the Sun, Ph.D. Thesis, Utrecht University, Utrecht. [ADS] (Cited on page 71.) Spruit, H.C., 1977b, “Heat flow near obstacles in the solar convection zone”, Solar Phys., 55, 3–34. [ADS] (Cited on pages 77 and 80.) Spruit, H.C., 1979, “Convective collapse of flux tubes”, Solar Phys., 61, 363–378. [ADS] (Cited on page 71.) Spruit, H.C. and Zweibel, E.G., 1979, “Convective instability of thin flux tubes”, Solar Phys., 62, 15–22. [ADS] (Cited on page 71.) Spruit, H.C., Nordlund, Å. and Title, A.M., 1990, “Solar convection”, Annu. Rev. Astron. Astrophys., 28, 263–301. [DOI], [ADS] (Cited on page 8.) Steffen, M. and Holweger, H., 2002, “Line formation in convective stellar atmospheres. I. Granulation corrections for solar photospheric abundances”, Astron. Astrophys., 387, 258–270. [DOI], [ADS], [astro-ph/0203127] (Cited on pages 42 and 56.) Steffen, M., Ludwig, H.-G. and Freytag, B., 1995, “Synthetic spectra computed from hydrodynamical model atmospheres of DA white dwarfs”, Astron. Astrophys., 300, 473. [ADS] (Cited on page 13.) Stein, R.F. and Nordlund, Å., 1989, “Topology of convection beneath the solar surface”, Astrophys. J. Lett., 342, L95–L98. [DOI], [ADS] (Cited on pages 13, 20, 35, and 37.) Stein, R.F. and Nordlund, Å., 1998, “Simulations of Solar Granulation. I. General Properties”, Astrophys. J., 499, 914–933. [DOI], [ADS] (Cited on pages 13, 18, 19, 23, 24, 27, 28, 30, 33, and 38.) Stein, R.F. and Nordlund, Å., 2006, “Solar Small-Scale Magnetoconvection”, Astrophys. J., 642, 1246–1255. [DOI], [ADS] (Cited on pages 71 and 83.) Stein, R.F., Carlsson, M. and Nordlund, Å., 1997, “Numerical Simulations Can Lead to New Insights”, in Computational Astrophysics; 12th Kingston Meeting on Theoretical Astrophysics, Proceedings of the 12th ‘Kingston Meeting’ on Computational Astrophysics, held in Halifax, Canada October 17–19 1996, (Eds.) Clarke, D.A., West, M.J., vol. 123 of Astronomical Society of the Pacific Conference Series, pp. 72–77, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 19.) Stein, R.F., Georgobiani, D., Trampedach, R., Ludwig, H.-G. and Nordlund, Å., 2005, “Excitation of P-Modes in the Sun and Stars”, in Highlights of Astronomy, Vol. 13, As Presented at the XXVth General Assembly of the IAU, Sydney, Australia, 13–26 July 2003, (Ed.) Engvold, O., p. 411, IAU, San Francisco. [ADS] (Cited on page 36.) Stein, R.F., Benson, D., Georgobiani, D. and Nordlund, Å., 2006a, “Supergranule Scale Convection Simulations”, in SOHO 18/Gong 2006/HELAS I: Beyond the Spherical Sun, Proceedings of SOHO 18/GONG 2006/HELAS I, 7–11 August 2006, Sheffield, UK, (Ed.) Thompson, M., vol. SP-624 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 36, 37, 38, and 39.) Stein, R.F., Benson, D. and Nordlund, Å., 2006b, “Solar Supergranulation Scale Simulations (Abstract No. JD17-15)”, Highlights of Recent Progress in the Seismology of the Sun and Sun-Like Stars, IAU XXVIth General Assembly, Joint Discussion 17, 23 August 2006, Prague, Czech Republic, conference paper. [ADS] (Cited on pages 36, 37, and 38.)) Stein, R.F., Benson, D., Georgobiani, D., Nordlund, Å. and Schaffenberger, W., 2007a, “Surface Convection”, in Unsolved Problems in Stellar Physics, A Conference in Honor of Douglas Gough, Cambridge, UK, 2–6 July 2007, (Eds.) Stancliffe, R.J., Dewi, J., Houdek, G., Martin, R.G., Tout, C.A., vol. 948 of AIP Conference Proceedings, pp. 111–115, American Institute of Physics, Melville. [ADS]. Doi not found anymore 10.1063/1.2818958 (Cited on page 61.) Stein, R.F., Benson, D. and Nordlund, Å., 2007b, “Solar Magneto-Convection Simulations”, in New Solar Physics with Solar-B Mission, Proceedings of the Sixth Solar-B Science Meeting held 8–11 November 2005 in Kyoto, Japan, (Eds.) Shibata, K., Nagata, S., Sakurai, T., vol. 369 of ASP Conference Series, pp. 87–98, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 36.) Steiner, O., 2003, “Distribution of magnetic flux density at the solar surface. Formulation and results from simulations”, Astron. Astrophys., 406, 1083–1088. [DOI], [ADS] (Cited on page 74.) Steiner, O., 2005, “Radiative properties of magnetic elements. II. Center to limb variation of the appearance of photospheric faculae”, Astron. Astrophys., 430, 691–700. [DOI], [ADS] (Cited on page 80.) Steiner, O. and Stenflo, J.O., 1990, “Model Calculations of the Photospheric Layers of Solar Magnetic Fluxtubes”, in Solar Photosphere: Structure, Convection, and Magnetic Fields, Proceedings of the 138th Symposium of the International Astronomical Union, held in Kiev, U.S.S.R., May 15–20, 1989, (Ed.) Stenflo, J.O., vol. 138 of IAU Symposia, pp. 181–184, Kluwer, Dordrecht; Boston. [ADS] (Cited on page 25.) Steiner, O., Grossmann-Doerth, U., Knölker, M. and Schüssler, M., 1998, “Dynamical Interaction of Solar Magnetic Elements and Granular Convection: Results of a Numerical Simulation”, Astrophys. J., 495, 468. [DOI], [ADS] (Cited on page 84.) Steiner, O., Hauschildt, P.H. and Bruls, J., 2001, “Radiative properties of magnetic elements. I. Why are G-band bright points bright?”, Astron. Astrophys., 372, L13–L16. [DOI], [ADS] (Cited on page 77.) Steiner, O., Vigeesh, G., Krieger, L., Wedemeyer-Böhm, S., Schaffenberger, W. and Freytag, B., 2007, “First local helioseismic experiments with CO5”, Astron. Nachr., 328, 323. [DOI], [ADS], [astro-ph/0701029] (Cited on page 61.) Stix, M., 2004, The Sun: An Introduction, Astronomy and Astrophysics Library, Springer, Berlin; New York, 2nd corr. edn. (Cited on page 8.) Stodilka, M.I. and Malynych, S.Z., 2006, “Spatial variations in the velocity field and real solar granulation”, Mon. Not. R. Astron. Soc., 373, 1523–1530. [DOI], [ADS], [astro-ph/0612436] (Cited on page 15.) Straus, T., Deubner, F.-L. and Fleck, B., 1992, “Is mesogranulation a distinct regime of convection?”, Astron. Astrophys., 256, 652–659. [ADS] (Cited on page 35.) Straus, T., Severino, G. and Steffen, M., 2006, “Resonant Oscillation Modes and Background in Realistic Hydrodynamical Simulations of Solar Surface Convection”, in SOHO-17: 10 Years of SOHO and Beyond, Proceedings of the conference held 7–12 May 2006 at Giardini Naxos, Sicily, Italy, (Eds.) Lacoste, H., Ouwehand, L., vol. SP-617 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on pages 61 and 70.) Tao, L., Weiss, N.O., Brownjohn, D.P. and Proctor, M.R.E., 1998, “Flux Separation in Stellar Magnetoconvection”, Astrophys. J. Lett., 496, L39. [DOI], [ADS] (Cited on page 71.) Thelen, J.-C. and Cattaneo, F., 2000, “Dynamo action driven by convection: the influence of magnetic boundary conditions”, Mon. Not. R. Astron. Soc., 315, L13–L17. [ADS] (Cited on page 71.) Title, A.M., Tarbell, T.D., Topka, K.P., Ferguson, S.H. and Shine, R.A. (SOUP Team)), 1989, “Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2”, Astrophys. J., 336, 475–494. [DOI], [ADS] (Cited on pages 15 and 35.) Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J., 1998, “Pumping of Magnetic Fields by Turbulent Penetrative Convection”, Astrophys. J. Lett., 502, L177–L180. [DOI], [ADS] (Cited on page 81.) Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J., 2001, “Transport and Storage of Magnetic Field by Overshooting Turbulent Compressible Convection”, Astrophys. J., 549, 1183–1203. [DOI], [ADS] (Cited on page 81.) Tong, C.H., Thompson, M.J., Warner, M.R. and Pain, C.C., 2003a, “Helioseismic Signals and Wave Field Helioseismology”, Astrophys. J., 593, 1242–1248. [DOI], [ADS] (Cited on page 60.) Tong, C.H., Thompson, M.J., Warner, M.R. and Pain, C.C., 2003b, “The Significance of Density and Attenuation in the Local Helioseismology”, Astrophys. J. Lett., 596, L263–L266. [DOI], [ADS] (Cited on page 60.) Tong, C.H., Thompson, M.J., Warner, M.R., Rajaguru, S.P. and Pain, C.C., 2003c, “Acoustic Wave Propagation in the Sun: Implications for Wave Field and Time-Distance Helioseismology”, Astrophys. J. Lett., 582, L121–L124. [DOI], [ADS] (Cited on page 60.) Trampedach, R., 2004a, “Improved phenomenological equation of state in the chemical picture”, in Equation-of-State and Phase-Transition in Models of Ordinary Astrophysical Matter, Proceedings of the Conference held 2–11 June 2004 in Leiden, The Netherlands, (Eds.) Celebonovic, V., Gough, D., Däppen, W., vol. 731 of AIP Conference Proceedings, pp. 99–105, American Institute of Physics, Melville. [ADS], [astro-ph/0411315] (Cited on page 14.) Trampedach, R., 2004b, Ingredients for accurate simulations of convection in stellar envelopes, Ph.D. Thesis, Michigan State University, East Lansing, MI. [ADS] (Cited on page 14.) Trampedach, R. and Asplund, M., 2003, “Radiative Transfer with Very Few Wavelengths”, in 3D Stellar Evolution, Proceedings of the Conference held 22–26 July 2002 at University of California Davis, Livermore, USA, (Eds.) Turcotte, S., Keller, S.C., Cavallo, R.M., vol. 293 of ASP Conference Series, pp. 209–213, Astronomical Society of the Pacific, San Francisco. [ADS] (Cited on page 13.) Trampedach, R., Däppen, W. and Baturin, V.A., 2006, “A Synoptic Comparison of the Mihalas-Hummer-Däppen and OPAL Equations of State”, Astrophys. J., 646, 560–578. [DOI], [ADS], [astro-ph/0604352] (Cited on page 14.) Turck-Chièze, S., Couvidat, S., Piau, L., Ferguson, J., Lambert, P., Ballot, J., García, R.A. and Nghiem, P., 2004, “Surprising Sun: A New Step Towards a Complete Picture?”, Phys. Rev. Lett., 93(21), 211102. [DOI], [ADS], [astro-ph/0407176] (Cited on page 57.) Turcotte, S., Richer, J., Michaud, G., Iglesias, C.A. and Rogers, F.J., 1998, “Consistent Solar Evolution Model Including Diffusion and Radiative Acceleration Effects”, Astrophys. J., 504, 539. [DOI], [ADS] (Cited on page 57.) Uitenbroek, H., 1998, “The Effect of Photospheric Granulation on the Determination of the Lithium Abundance in Solar-Type Stars”, Astrophys. J., 498, 427. [DOI], [ADS] (Cited on page 42.) Uitenbroek, H., 2000a, “The CO Fundamental Vibration-Rotation Lines in the Solar Spectrum. I. Imaging Spectroscopy and Multidimensional LTE Modeling”, Astrophys. J., 531, 571–584. [DOI], [ADS] (Cited on pages 42 and 49.) Uitenbroek, H., 2000b, “The CO Fundamental Vibration-Rotation Lines in the Solar Spectrum. II. Non-LTE Transfer Modeling in Static and Dynamic Atmospheres”, Astrophys. J., 536, 481–493. [DOI], [ADS] (Cited on page 49.) Ulrich, R.K., 1998, “Large Scale Convection and the Solar Radius”, in New Eyes to See Inside the Sun and Stars: Pushing the Limits of Helio and Asteroseismology with New Observations from the Ground and from Space, Proceedings of the 185th Symposium of the International Astronomical Union, held in Kyoto, Japan, 18–22 August 1997, (Eds.) Deubner, F.-L., Christensen-Dalsgaard, J., Kurtz, D., vol. 185 of IAU Symposia, pp. 59–72, Kluwer, Dordrecht; Boston. [ADS] (Cited on page 36.) Ustyugov, S.D., 2006, “Magnetohydrodynamic Simulation of Solar Supergranulation”, in Numerical Modeling of Space Plasma Flows, Proceedings of 1ST IGPP-CalSpace International Conference held 26–30 March, 2006, in Palm Springs, California, USA, (Eds.) Zank, G.P., Pogorelov, N.V., vol. 359 of ASP Conference Series, pp. 226–231, Astronomical Society of the Pacific, San Francisco. [ADS], [astro-ph/0605627] (Cited on page 36.) Ustyugov, S.D., 2007, “Numerical Simulation of Solar Magnetoconvection with Realistic Physics”, in Fifty Years of Romanian Astrophysics, Proceedings of the conference held in Bucharest, Romania, 27–30 September 2006, (Eds.) Dumitrache, C., Popescu, N.A., Suran, M.D., Mioc, V., vol. 895 of AIP Conference Proceedings, pp. 109–114, American Institute of Physics, Melville. [DOI], [ADS] (Cited on page 36.) Ustyugov, S.D., 2008, “Large Eddy Simulation of Solar Photosphere Convection with Realistic Physics”, in Subsurface and Atmospheric Influences on Solar Activity, Proceedings of a workshop held at the NSO/Sac, Sunspot, New Mexico, USA, 16–20 April 2007, (Eds.) Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D., vol. 383 of ASP Conference Series, pp. 43–48, Astronomical Society of the Pacific, San Francisco. [ADS], [arXiv:0710.3023] (Cited on page 36.) van Ballegooijen, A.A., 1986, “Cascade of magnetic energy as a mechanism of coronal heating”, Astrophys. J., 311, 1001–1014. [DOI], [ADS] (Cited on page 84.) Vernazza, J.E., Avrett, E.H. and Loeser, R., 1976, “Structure of the solar chromosphere. II. The underlying photosphere and temperature-minimum region”, Astrophys. J. Suppl. Ser., 30, 1–60. [ADS] (Cited on page 39.) Vögler, A., 2003, Three-dimensional simulations of magneto-convection in the solar photosphere, Ph.D. Thesis, Göttingen University, Göttingen. URL (accessed 27 March 2009): http://webdoc.sub.gwdg.de/diss/2004/voegler/ (Cited on page 75.) Vögler, A., 2004, “Effects of non-grey radiative transfer on 3D simulations of solar magnetoconvection”, Astron. Astrophys., 421, 755–762. [DOI], [ADS] (Cited on pages 13 and 25.) Vögler, A., 2005, “On the effect of photospheric magnetic fields on solar surface brightness. Results of radiative MHD simulations”, Mem. Soc. Astron. Ital., 76, 842–849. [ADS] (Cited on pages 71 and 73.) Vögler, A. and Schüssler, M., 2003, “Studying magneto-convection by numerical simulation”, Astron. Nachr., 324, 399–404. [ADS] (Cited on page 75.) Vögler, A. and Schüssler, M., 2007, “A solar surface dynamo”, Astron. Astrophys., 465, L43–L46. [DOI], [ADS], [astro-ph/0702681] (Cited on page 84.) Vögler, A., Bruls, J.H.M.J. and Schüssler, M., 2004, “Approximations for non-grey radiative transfer in numerical simulations of the solar photosphere”, Astron. Astrophys., 421, 741–754. [DOI], [ADS] (Cited on page 13.) Vögler, A., Shelyag, S., Schüssler, M., Cattaneo, F., Emonet, T. and Linde, T., 2005, “Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code”, Astron. Astrophys., 429, 335–351. [DOI], [ADS] (Cited on pages 13, 71, and 83.) Voigt, H.-H., 1956, “‘Drei-Strom-Modell’ der Sonnenphotosphäre und Asymmetrie der Linien des infraroten Sauerstoff-Tripletts”, Z. Astrophys., 40, 157. [ADS] (Cited on page 39.) Wang, H., 1989, “Do mesogranules exist?”, Solar Phys., 123, 21–32. [ADS] (Cited on page 35.) Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G. and Holweger, H., 2003, “3-D hydrodynamic simulations of the solar chromosphere”, Astron. Nachr., 324, 410–411. [ADS] (Cited on pages 30 and 87.) Wedemeyer, S., Freytag, B., Steffen, M., Ludwig, H.-G. and Holweger, H., 2004, “Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere”, Astron. Astrophys., 414, 1121–1137. [DOI], [ADS], [astro-ph/0311273] (Cited on page 30.) Wedemeyer-Böhm, S. and Steffen, M., 2007, “Carbon monoxide in the solar atmosphere. II. Radiative cooling by CO lines”, Astron. Astrophys., 462, L31–L35. [DOI], [ADS], [astro-ph/0612197] (Cited on page 49.) Wedemeyer-Böhm, S., Kamp, I., Bruls, J. and Freytag, B., 2005, “Carbon monoxide in the solar atmosphere. I. Numerical method and two-dimensional models”, Astron. Astrophys., 438, 1043–1057. [DOI], [ADS], [astro-ph/0503496] (Cited on page 49.) Weiss, N.O., 1966, “The Expulsion of Magnetic Flux by Eddies”, Proc. R. Soc. London, Ser. A, 293, 310–328. [ADS] (Cited on page 71.) Weiss, N.O., Brownjohn, D.P., Hurlburt, N.E. and Proctor, M.R.E., 1990, “Oscillatory convection in sunspot umbrae”, Mon. Not. R. Astron. Soc., 245, 434–452. [ADS] (Cited on page 71.) Weiss, N.O., Brownjohn, D.P., Matthews, P.C. and Proctor, M.R.E., 1996, “Photospheric Convection in Strong Magnetic Fields”, Mon. Not. R. Astron. Soc., 283, 1153–1164. [ADS] (Cited on page 71.) Weiss, N.O., Proctor, M.R.E. and Brownjohn, D.P., 2002, “Magnetic flux separation in photospheric convection”, Mon. Not. R. Astron. Soc., 337, 293–304. [DOI], [ADS] (Cited on page 71.) Wilken, V., de Boer, C.R., Denker, C. and Kneer, F., 1997, “Speckle measurements of the centre-to-limb variation of the solar granulation”, Astron. Astrophys., 325, 819–824. [ADS] (Cited on page 15.) Yelles Chaouche, L., Cheung, M., Lagg, A. and Solanki, S., 2005, “Diagnostics of a Simulated Flux Tube Emergence”, in The Dynamic Sun: Challenges for Theory and Observations, Proceedings of the 11th European Solar Physics Meeting, 11–16 September 2005, Leuven, Belgium, (Eds.) Danesy, D., Poedts, S., De Groof, A., Andries, J., vol. SP-600 of ESA Conference Proceedings, ESA Publications Division, Noordwijk. [ADS] (Cited on page 81.) Young, P.A. and Arnett, D., 2005, “Observational Tests and Predictive Stellar Evolution. II. Nonstandard Models”, Astrophys. J., 618, 908–918. [DOI], [ADS], [astro-ph/0409658] (Cited on page 57.) Zahn, J.-P., 1987, “Solar and Stellar Convection”, in Solar and Stellar Physics, Proceedings of the 5th European Solar Meeting Held in Titisee/Schwarzwald, Germany, April 27–30, 1987, (Eds.) Schröter, E.-H., Schüssler, M., vol. 292 of Lecture Notes in Physics, pp. 55–71, Springer, Berlin; New York. [ADS] (Cited on page 8.) Zhao, J., 2008, “Recent progress in time distance helioseismology”, Adv. Space Res., 41, 838–845. [DOI], [ADS] (Cited on page 60.) Zhao, J. and Kosovichev, A.G., 2003, “On the inference of supergranular flows by time-distance helioseismology”, in Local and Global Helioseismology: The Present and Future, Proceedings of SOHO 12/GONG+ 2002, 27 October–1 November 2002, Big Bear Lake, California, USA, (Ed.) Sawaya-Lacoste, H., vol. SP-517 of ESA Conference Proceedings, pp. 417–420, ESA Publications Division, Noordwijk. [ADS] (Cited on page 36.) Zhao, J., Georgobiani, D., Kosovichev, A.G., Benson, D., Stein, R.F. and Nordlund, Å., 2007a, “Validation of Time-Distance Helioseismology by Use of Realistic Simulations of Solar Convection”, Astrophys. J., 659, 848–857. [DOI], [ADS], [astro-ph/0612551] (Cited on page 36.) Zhao, J., Georgobiani, D., Kosovichev, A.G., Benson, D., Stein, R.F. and Nordlund, Å., 2007b, “Validation of Time-Distance Helioseismology by Use of Realistic Simulations of Solar Convection”, Astrophys. J., 659, 848–857. [DOI], [ADS], [astro-ph/0612551] (Cited on page 61.)