Solar Activity Index for the Critical Frequency of the E Layer

Pleiades Publishing Ltd - Tập 63 - Trang 796-801 - 2023
M. G. Deminov1, V. I. Badin1, R. G. Deminov2, E. V. Nepomnyashchaya1
1Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Moscow, Troitsk, Russia
2Kazan Federal University, Kazan, Russia

Tóm tắt

The index P = (F1 + F81)/2 is the optimal solar activity index for the critical frequency of the E layer, foE, where F1 and F81 are the flux of radio emission from the Sun at a wavelength of 10.7 cm on a given day and the 81-day average value of this flux centered on a given day. Therefore, to calculate F81 on a given day, knowledge of F1 is needed not only on this and previous days, but also 40 days in advance. Instead of index F81, in problems on short-term forecasting of this index, it is possible to use F(27, 81), the weighted average solar activity index with a characteristic time of 27 days for the current and previous 80 days. Therefore, to calculate F(27, 81), knowledge of F1 on this and previous days suffices. This paper presents the first estimates of the effectiveness of such a replacement for foE. For this, changes in the accuracy of calculating foE were analyzed when index P is replaced by P * = (F1 + F(27, 81))/2 in empirical models constructed from foE data of ionospheric stations in the daytime at middle and subauroral latitudes for 1959–1995. It turns out that the P and P * indices are almost equivalent for calculating foE based on the empirical models constructed at these latitudes: the difference in the coefficients of variation for foE does not exceed 0.3% in each season at different solar cycle phases. Therefore, P * can be recommended for use in short-term foE forecasting problems, since it is based on indices F1 for the current and previous days, as opposed to index P, which requires a forecast 40 days in advance to calculate F1.

Tài liệu tham khảo

Antonova, L.A., Ivanov-Kholodnyi, G.S., and Chertoprud, V.E., Aeronomiya sloya E (uchet variatsii UF-izlucheniya i geomagnitnykh vozmushchenii) (Aeronomy of the E Layer (Use of Variations in the UV-Radiation and Geomagnetic Disturbances)), Moscow: Yanus, 1996. Bilitza, D., IRI the international standard for the ionosphere, Adv. Radio Sci., 2018, vol. 16, pp. 1–11. Deminov, M.G., Solar-activity index for the E-layer critical frequency at middle latitudes, Geomagn. Aeron. (Engl. Transl.), 2022a, vol. 62, nos. 1–2, pp. 66–70. https://doi.org/10.1134/S0016793222020050 Deminov, M.G., Effective Solar-Activity Index for Short-Term Forecasting of the Mean Solar-Activity Index, Geomagn. Aeron. (Engl. Transl.), 2022b, vol. 62, no. 3, pp. 178–181. https://doi.org/10.1134/S0016793222030057 Deminov, M.G. and Rogov, D.D., The solar activity index for the critical frequency of the E-layer at subauroral latitudes, Geomagn. Aeron. (Engl. Transl.), 2022, vol. 62, no. 5, pp. 582–589. https://doi.org/10.1134/S0016793222050048 Deminov, M.G., Mikhailov, A.V., Mikhailov, V.V., Shubin, V.N., and Tsybulya, K.G., Ionospheric modeling and prediction, in Sistemnyi monitoring ionosfery. Sbornik nauchnykh trudov (System Monitoring of the Ionosphere: Collection of Scientific Works), Kotonaeva, N.G., Ed., Moscow: Fizmatlit, 2019, pp. 286–343. Gal’perin, Yu.I., Sivtseva, L.D., Filippov, V.M., and Khalipov, V.L., Subavroral’naya verkhnyaya ionosfera (The Subauroral Upper Ionosphere), Novosibirsk: Nauka, 1990. Gmurman, V.E., Teoriya veroyatnostei i matematicheskaya statistika (Probability Theory and Mathematical Statistics), Moscow: Vysshaya Shkola, 2003. Kouris, S.S. and Muggleton, L.M., Diurnal variation in the layer ionization, J. Atmos. Terr. Phys., 1973a, vol. 35, pp. 133–139. https://doi.org/10.1016/0021-9169(73)90221-3 Kouris, S.S. and Muggleton, L.M., World morphology of the Appleton layer seasonal anomaly, J. Atmos. Terr. Phys., 1973b, vol. 35, pp. 141–151. https://doi.org/10.1016/0021-9169(73)90222-5 Nava, B., Coisson, P., and Radicella, S.M., A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015 Nikolaeva, V. and Gordeev, E., SPAM: Solar spectrum prediction for applications and modeling, Atmosphere, 2023, vol. 13, p. 226. https://doi.org/10.3390/atmos14020226 Nusinov, A.A., Deterministic model of midlatitude and equatorial E-layer (description and comparative accuracy characteristics), Ionos. Issled., 1988, no. 44, pp. 94–99. Nusinov, A.A., Seasonal–latitudinal variations of ionospheric E-layer critical frequencies dependence on solar activity in empirical models, Adv. Space Res., 2006, vol. 37, pp. 433–436. https://doi.org/10.1016/j.asr.2005.11.017 Nusinov, A.A., Kazachevskaya, T.V., and Katyushina, V.V., Solar extreme and far ultraviolet radiation modeling for aeronomic calculations, Remote Sens., 2021, vol. 13, p. 1454. https://doi.org/10.3390/rs13081454 Pavlov, A.V. and Pavlova, N.M., Comparison of NmE measured by the boulder ionosonde with model predictions near the spring equinox, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 39–47. https://doi.org/10.1016/j.jastp.2013.05.006 Richards, P.G., Fennelly, J.A., and Torr, D.G., EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 1994, vol. 99, pp. 8981–8992. https://doi.org/10.1029/94JA00518 Richards, P.G., Woods, T.N., and Peterson, W.K., HEUVAC: A new high resolution solar EUV proxy model, Adv. Space Res., 2006, vol. 37, pp. 315–322. https://doi.org/10.1016/j.asr.2005.06.031 Solomon, S.C., Numerical models of the E-region ionosphere, Adv. Space Res., 2006, vol. 37, pp. 1031–1037. https://doi.org/10.1016/j.asr.2005.09.040 Solomon, S.C. and Qian, L., Solar extreme-ultraviolet irradiance for general circulation models, J. Geophys. Res., 2005, vol. 110, p. A10306. https://doi.org/10.1029/2005JA011160 Taylor, J.R., An Introduction to Error Analysis, Mill Valley, Calif.: University Science Books, 1982. Titheridge, J.E., Re-modeling the ionospheric E region, Kleinheubacher Ber., 1996, vol. 39, pp. 687–696. Wrenn, G.L., Time-weighted accumulations Ap(τ) and Kp(τ), J. Geophys. Res., 1987, vol. 92, pp. 10125–10129. https://doi.org/10.1029/JA092iA09p10125 Yang, Z., Ssessanga, N., Tran, L.T., Bilitza, D., and Kenpankho, P., On improvement in representation of foE in IRI, Adv. Space Res., 2017, vol. 60, pp. 347–356. https://doi.org/10.1016/j.asr.2016.11.008