Sol–gel synthesis of iron yttrium garnet Y3Fe5O12 using metal acetylacetonates

Russian Journal of Inorganic Chemistry - Tập 62 - Trang 1135-1140 - 2017
N. P. Simonenko1, Ph. Yu. Gorobtsov1,2, N. N. Efimov1, E. P. Simonenko1,3, V. G. Sevastyanov1,3, N. T. Kuznetsov1,2
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Moscow Technological University, Moscow, Russia
3Korolev Samara State Aerospace University, National Research University (SGAU), Samara, Russia

Tóm tắt

The synthesis of hydrolytically active heteroligand complexes of the composition [M(O2C5H7)x(iOC5H11)y] (M = Fe3+ and Y3+) using iron and yttrium acetylacetonates was studied. Their reactivity was shown to be dependent on the degree of shielding of iron and yttrium cations in hydrolysis and polycondensation during the formation of a connected dispersion system. The crystallization temperature of iron yttrium garnet Y3Fe5O12 upon heating xerogel was determined. It was found that the dispersity, microstructure, and magnetic characteristics of the products depend on the synthesis conditions.

Tài liệu tham khảo

U. Ozgur, Y. Alivov, and H. Morkoc, J. Mater. Sci.: Mater. Electron. 20, 789 (2009). H. Donnerberg and C. R. A. Catlow, J. Phys.: Condens. Matter 5, 2947 (1993). S. H. Vajargah, H. R. Hosseini, and Z. A. Nemati, J. Alloys Compd. 430, 339 (2007). C. D. Veitch, J. Mater. Sci. 26, 6527 (1991). R. D. Peelamedu, R. Roy, and D. Agrawal, Mater. Res. Bull. 36, 2723 (2001). R. D. Sancheza, C. A. Ramosa, J. Rivas, et al., Physica B 354, 104 (2004). S. H. Vajargah, H. R. M. Hosseini, and Z. A. Nemati, Mater. Sci. Eng. B 129, 211 (2006). Z. Cheng, Y. Cui, H. Yang, et al., J. Nanopart. Res. 11, 1185 (2009). Z. Cheng and H. Yang, Physica E 39, 198 (2007). F. W. Aldbea, N. B. Ibrahim, M. H. Abdullah, et al., J. Sol-Gel Sci. Technol. 62, 483 (2012). H. Xu and H. Yang, Phys. Status Solidi (A). Appl. Mater. 204, 1203 (2007). Z. Cheng and H. Yang, J. Mater. Sci.: Mater. Electron. 18, 1065 (2007). H. Xu and H. Yang, Mater. Manuf. Proc. 23, 1 (2008). N. T. Kuznetsov, V. G. Sevast’yanov, E. P. Simonenko, et al., RU Patent No. 2407705 (2010). V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278 E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194 N. T. Kuznetsov, V. G. Sevast’yanov, E. P. Simonenko, et al., RU Patent No. 2521643 (2014). N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153 N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019X N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184 N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, et al., Yad. Fiz. Inzh. 5, 331 (2014). E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Compos. Nanostruct, No. 4, 52 (2011).