Vật liệu hút khí dựa trên perovskite làm từ phương pháp sol-gel cho quá trình tách khí ở nhiệt độ cao

Journal of Sol-Gel Science and Technology - Tập 89 - Trang 776-784 - 2018
Ainun Sailah Sihar1, Nur Hashimah Alias1, Munawar Zaman Shahruddin1, Syed Shatir Asghrar Syed Hassan1, Nik Raihan Nik Him1, Nur Hidayati Othman1
1Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

Tóm tắt

Trong nghiên cứu này, việc thay thế một phần hoặc doping SrCo0.8Fe0.2O3-δ (SCF) dẫn đến sự hình thành các hợp chất La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) và La0.6Sr0.4Co0.2Ni0.8O3-δ (LSCNi) đã được thực hiện thông qua kỹ thuật sol-gel Pechini. Các oxit perovskite đã được nung ở nhiệt độ 850 °C trong 4 giờ và các đặc trưng về cấu trúc tinh thể, hình thái và hành vi hấp thụ/phát thải oxy của chúng đã được so sánh hệ thống. Kết quả cho thấy các oxit perovskite tổng hợp được thể hiện dạng perovskite lập phương đơn pha. Phân tích O2-TPD cho thấy LSCNi hấp thụ một lượng oxy lớn nhất, trong khi SCF chỉ hoạt động tốt hơn ở nhiệt độ vận hành cao hơn. Từ thử nghiệm trên giường cố định, LSCF và LSCNi được tìm thấy có tiềm năng cao trong việc sử dụng làm vật liệu hấp thụ oxy cho quá trình tách khí ở nhiệt độ cao vì chúng cần ít thời gian hơn để đạt được đường cong bứt phá.

Từ khóa

#perovskite #sol-gel #tách khí #hấp thụ oxy #độ tinh khiết cao

Tài liệu tham khảo

Wang H, Schiestel T, Tablet C et al (2006) Mixed oxygen ion and electron conducting hollow fiber membranes for oxygen separation. Solid State Ion 177:2255–2259. https://doi.org/10.1016/j.ssi.2006.05.039 Jayaraman A, Yang RT (2005) Stable oxygen-selective sorbents for air separation. Chem Eng Sci 60:625–634. https://doi.org/10.1016/j.ces.2004.08.032 Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides. Mater Res Bull 23:51–58. https://doi.org/10.1016/0025-5408(88)90224-3 Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 61:57–77. https://doi.org/10.1016/j.pecs.2017.03.003 Ding L, Wang L, Ding D et al (2017) Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3−δ perovskite cathode for intermediate-temperature solid oxide fuel cells. J Power Sources 354:26–33. https://doi.org/10.1016/j.jpowsour.2017.04.009 Mani R, Gautam RK, Banerjee S et al (2015) A study on La0.6Sr0.4Co0.3Fe0.8O3 (LSCF) cathode material prepared by gel combustion method for IT-SOFCs: spectroscopic, electrochemical and microstructural analysis. Asian J Res Chem 3:6–11. https://doi.org/10.5958/0974-4150.2015.00062.0 Labhsetwar NK, Watanabe A, Biniwale RB et al (2001) Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application. Appl Catal B Environ 33:165–173. https://doi.org/10.1016/S0926-3373(01)00175-8 Kumar S, Teraoka Y, Joshi AG et al (2011) Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O. J Mol Catal A Chem 348:42–54. https://doi.org/10.1016/j.molcata.2011.07.017 Kumar S, Vinu A, Subrt J et al (2012) Catalytic N2O decomposition on Pr0.8Ba 0.2MnO3 type perovskite catalyst for industrial emission control. Catal Today 198:125–132. https://doi.org/10.1016/j.cattod.2012.06.015 Swamy CS, Christopher J (1992) Decomposition of N2O on perovskite-related oxides. Catal Rev 34:409–425. https://doi.org/10.1080/01614949208016320 Watanabe R, Sekine Y, Takamatsu H, et al (2010) Pt and/or Pd supported/incorporated catalyst on perovskite-type oxide for water gas shift reaction. Topics Catal 53: 621–628 Hla SS, Sun Y, Duffy GJ et al (2011) Kinetics of the water-gas shift reaction over a La0.7Ce0.2FeO3 perovskite-like catalyst using simulated coal-derived syngas at high temperature. Int J Hydrog Energy 36:518–527. https://doi.org/10.1016/j.ijhydene.2010.10.015 Sunarso J, Baumann S, Serra JM et al (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci 320:13–41. https://doi.org/10.1016/j.memsci.2008.03.074 Shao X, Dong D, Parkinson G, Li C-Z (2014) Microstructure control of oxygen permeation membranes with templated microchannels. J Mater Chem A 2:410. https://doi.org/10.1039/c3ta13744a Gaudillere C, Garcia-Fayos J, Balaguer M, Serra JM (2014) Enhanced oxygen separation through robust freeze-cast bilayered dual-phase membranes. ChemSusChem 7: https://doi.org/10.1002/cssc.201402324 Meng B, Zhang H, Qin J et al (2015) The catalytic effects of La0.3Sr0.7Fe0.7Cu0.2Mo0.1O3 perovskite and its hollow fibre membrane for air separation and methane conversion reactions. Sep Purif Technol 147:406–413. https://doi.org/10.1016/j.seppur.2015.01.039 Roseno KTC, Brackmann R, da Silva MA, Schmal M (2016) Investigation of LaCoO3, LaFeO3 and LaCo0.5Fe0.5O3 perovskites as catalyst precursors for syngas production by partial oxidation of methane. Int J Hydrog Energy 41:18178–18192. https://doi.org/10.1016/j.ijhydene.2016.07.207 Yang Q, Lin JYS (2006) Fixed-bed performance for production of oxygen-enriched carbon dioxide stream by perovskite-type ceramic sorbent. Sep Purif Technol 49:27–35. https://doi.org/10.1016/j.seppur.2005.08.004 Tsai C-Y, Dixon AG, Ma YH et al (1998) Dense perovskite, La1−xAxFe1-yCoyO3-d (A=Ba, Sr, Ca), membrane synthesis, applications, and characterization. J Am Ceram Soc 81:1437–1444 Yin Q, Kniep J, Lin YS (2008) Oxygen sorption and desorption properties of Sr-Co-Fe oxide. Chem Eng Sci 63:2211–2218. https://doi.org/10.1016/j.ces.2008.01.016 Wang Z, Yang N, Meng B (2008) Preparation and oxygen permeation properties of highly asymmetric La0. 6Sr0. 4Co0. 2Fe0. 8O3− α perovskite hollow-fiber membranes. Ind Eng Chem Res 48:510–516 Brisotto M, Cernuschi F, Drago F et al (2016) High temperature stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and La0.6Sr0.4Co1−yFeyO3−δ oxygen separation perovskite membranes. J Eur Ceram Soc 36:1679–1690. https://doi.org/10.1016/j.jeurceramsoc.2016.01.029 Miura N, Ikeda H, Tsuchida A (2016) Sr1-xCaxFeO3-δas a new oxygen sorbent for the high-temperature pressure-swing adsorption process. Ind Eng Chem Res https://doi.org/10.1021/acs.iecr.5b04579 Middelkoop V, Chen H, Michielsen B et al (2014) Development and characterisation of dense lanthanum-based perovskite oxygen-separation capillary membranes for high-temperature applications. J Memb Sci 468:250–258. https://doi.org/10.1016/j.memsci.2014.05.032 Shen Qiuwan, Zheng Ying, Luo C et al (2015) Effect of A/B-site substitution on oxygen production performance of strontium cobalt based perovskites for CO2 capture application. RSC Adv 5:39785–39790. https://doi.org/10.1039/C5RA04891E Kovalevsky AV, Yaremchenko AA, Kolotygin VA et al (2011) Oxygen permeability and stability of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic membranes. Solid State Ion 192:677–681. https://doi.org/10.1016/j.ssi.2010.05.030 Yin Q, Lin YS (2006) Effect of dopant addition on oxygen sorption properties of La-Sr-Co-Fe-O perovskite type oxide. Adsorption 12:329–338. https://doi.org/10.1007/s10450-006-0563-z Wu H-C, Lin YS (2017) Effects of oxygen vacancy order–disorder phase transition on air separation by perovskite sorbents. Ind Eng Chem Res https://doi.org/10.1021/acs.iecr.7b00461 He Y, Zhu X, Li Q, Yang W (2009) Perovskite oxide absorbents for oxygen separation. AIChE J 55:3125–3133. https://doi.org/10.1002/aic Park J, Cho Y, Yi K et al (2010) Adsorption and desorption characteristics of barium oxide at high temperature. Appl Surf Sci 256:5528–5532. https://doi.org/10.1016/j.apsusc.2009.12.130 Othman NH, Shahruddin MZ, Sihar AS, et al (2016) In-situ catalytic surface modification of micro-structured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) oxygen permeable membrane using vacuum-assisted technique. In: MATEC Web Conferences Sihar AS, Shahruddin MZ, Alias NH et al (2017) Catalytic surface modification of alumina membrane for oxygen. J Teknol 2:29–34 Wang S, Jin F, Li L et al (2017) Stability, compatibility and performance improvement of SrCo0.8Fe0.1Nb0.1O3−δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells. Int J Hydrog Energy 42:4465–4477. https://doi.org/10.1016/j.ijhydene.2016.11.015 Liu J, Co AC, Paulson S, Birss VI (2006) Oxygen reduction at sol-gel derived La0.8Sr0.2Co 0.8Fe0.2O3 cathodes. Solid State Ion 177:377–387. https://doi.org/10.1016/j.mcm.2006.01.023 Hjalmarsson, P, Mogensen, MB, Fehrmann, R (2008) Strontium and nickel substituted lanthanumcobaltite as cathode in Solid Oxide Fuel Cells Evans CD, Kondrat SA, Smith PJ et al (2016) The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discuss 188:427–450. https://doi.org/10.1039/C5FD00187K Wu Y, Luo L (2009) Preparation of La0.95Ce0.05CoO3 with large surface area. Indian J Chem 48:202–205 Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO3-δ-based mixed conductors. Solid State Ion 177:3433–3444. https://doi.org/10.1016/j.ssi.2006.10.022 Del Toro R, Hernández P, Díaz Y, Brito JL (2013) Synthesis of La0.8Sr0.2FeO3 perovskites nanocrystals by Pechini sol-gel method. Mater Lett 107:231–234. https://doi.org/10.1016/j.matlet.2013.05.139 Babakhani EG, Towfighi J, Shirazi L, Pour AN (2011) Order-disorder transition and phase stability of BaxSr1-xCo0.8Fe0.2O3-δ oxides. J Memb Sci 376:78–82. https://doi.org/10.1016/j.memsci.2011.04.004 Zhang HM, Shimizu Y, Teraoka Y et al (1990) Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3 Perovskite-type Oxides. J Catal 121:432–440. https://doi.org/10.1016/0021-9517(90)90251-E Zhang HM, Yamazoe N, Teraoka Y (1989) Effects of B site partial substitutions of perovskite-type La0.6Sr0.4CoO3 on oxygen desorption. J Mater Sci Lett 8:995–996. https://doi.org/10.1007/BF01730464 Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 17:503–506 Chen X, Huang L, Wei Y, Wang H (2011) Tantalum stabilized SrCoO3−δ perovskite membrane for oxygen separation. J Mem 368:159––164 Tong J, Yang W, Cai R et al (2003) Investigation on the structure stability and oxygen permeability of titanium-doped perovskite-type oxides of BaTi0.2CoxFe0.8−xO3−δ (x = 0.2–0.6). Sep Purif Technol 32:289–299 Shao Z, Xiong G, Tong J et al (2001) Ba effect in doped Sr(Co0.8Fe0.2)O3-δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep Purif Technol 25:419–429 Ding H, Xu Y, Luo C et al (2017) Oxygen desorption behavior of sol-gel derived perovskite-type oxides in a pressurized fixed bed reactor. Chem Eng J 323:340–346. https://doi.org/10.1016/j.cej.2017.04.100