Phốt pho hữu cơ trong rừng nhiệt đới thấp

Springer Science and Business Media LLC - Tập 103 - Trang 297-315 - 2010
Benjamin L. Turner1, Bettina M. J. Engelbrecht1,2
1Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
2Department of Biology, Chemistry and Geological Sciences, University of Bayreuth, Bayreuth, Germany

Tóm tắt

Phốt pho được coi là yếu tố hạn chế năng suất sơ cấp trong rừng mưa nhiệt đới, nhưng hóa học của phốt pho hữu cơ trong các hệ sinh thái này vẫn chưa được hiểu rõ. Chúng tôi đã đánh giá thành phần của phốt pho hữu cơ trong đất ở 19 loại đất khác nhau dưới rừng nhiệt đới thấp tại Cộng hòa Panama bằng cách sử dụng phương pháp chiết xuất NaOH–EDTA và phép quang phổ cộng hưởng từ hạt nhân 31P. Các mẫu đất trải dài qua một gradient mưa mạnh (1730–3404 mm/năm) và chứa nhiều loại tính chất hóa học (pH từ 3.3 đến 7.0; carbon tổng cộng từ 2.8 đến 10.4%; phốt pho tổng cộng từ 74 đến 1650 mg P kg−1). Nồng độ phốt pho hữu cơ trong đất dao động từ 22 đến 494 mg P kg−1 và có sự tương quan tích cực với phốt pho tổng trong đất, pH và carbon tổng cộng, nhưng không tương quan với lượng mưa hàng năm. Phốt pho hữu cơ chiếm 26 ± 1% (trung bình ± sai số chuẩn, n = 19) tổng lượng phốt pho, cho thấy đây là một đặc tính nổi bật chung của các loại đất rừng nhiệt đới. Phốt pho hữu cơ chủ yếu tồn tại dưới dạng monoester phosphate (chiếm 68–96% tổng lượng phốt pho hữu cơ) với nồng độ thấp hơn của diester phosphate dưới dạng DNA (chiếm 4–32% tổng lượng phốt pho hữu cơ). Phosphonate, chứa liên kết carbon-phốt pho trực tiếp, chỉ được phát hiện ở hai loại đất (3% phốt pho hữu cơ), trong khi pyrophosphate, một polyphosphate vô cơ có chiều dài chuỗi hai, được phát hiện trong tất cả các loại đất với nồng độ lên tới 13 mg P kg−1 (chiếm 3–13% phốt pho vô cơ được chiết xuất). Monoester phosphate chiếm tỷ lệ lớn hơn trong tổng lượng phốt pho hữu cơ ở các loại đất trung tính có nồng độ phốt pho và chất hữu cơ cao, trong khi tỷ lệ diester phosphate cao hơn ở các loại đất rất acid có nồng độ phốt pho và chất hữu cơ thấp. Hầu hết các mẫu đất không chứa nồng độ có thể phát hiện của cả myo- hay scyllo-inositol hexakisphosphate, điều này tương phản rõ rệt với nhiều loại đất khoáng ôn đới chứa nhiều phosphate inositol. Chúng tôi kết luận rằng các thuộc tính của đất ảnh hưởng mạnh mẽ đến lượng và hình thức của phốt pho hữu cơ trong đất ở rừng mưa nhiệt đới, nhưng tỷ lệ tổng lượng phốt pho ở dạng hữu cơ tương đối không nhạy cảm với sự biến đổi khí hậu và các thuộc tính của đất. Cần có thêm nghiên cứu để đánh giá sự đóng góp của phốt pho hữu cơ trong đất đối với dinh dưỡng và đa dạng loài ở các hệ sinh thái phong phú về loài này.

Từ khóa

#Phốt pho hữu cơ; rừng mưa nhiệt đới; hóa học đất; phương pháp chiết xuất; quang phổ hạt nhân; đặc tính đất

Tài liệu tham khảo

Alexander I (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific, Oxford, UK, pp 169–188 Baillie IC (1989) Soil characteristics and classification in relation to the mineral nutrition of tropical wooded ecosystems. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific, Oxford, UK, pp 15–26 Baillie I, Elsenbeer H, Barthold F, Grimm R, Stallard R (2007) Semi-detailed soil survey of Barro Colorado Island, Panama. Soil Report [Online] available at http://biogeodb.stri.si.edu/bioinformatics/bci_soil_map/index.php (verified 16 November 2009) Bates JAR, Baker TCN (1960) Studies on a Nigerian forest soil. II. The distribution of phosphorus in the profile and in various soil fractions. J Soil Sci 11:257–265 Bawa KS (1990) Plant–pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422 Bowman RA, Cole CV (1978) Transformations of organic phosphorus substrates in soils as evaluated by NaHCO3 extraction. Soil Sci 125:49–54 Bowman RA, Moir JO (1993) Basic EDTA as an extractant for soil organic phosphorus. Soil Sci Soc Am J 57:1516–1518 Cade-Menun BJ (2005) Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 21–44 Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 161:770–785 Cade-Menun BJ, Berch SM, Preston CM, Lavkulich LM (2000) Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. 1. A comparison of two forest types. Can J For Res 30:1714–1725 Celi L, Barberis E (2007) Abiotic reactions of inositol phosphates in soil. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, UK, pp 207–220 Chacón N, Silver WL, Dubinsky EA, Cusack DF (2006) Iron reduction and soil phosphorus solubilization in humid tropical forest soils: the roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84 Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–691 Clinebell RR, Phillips OL, Stark N, Zuuring H (1995) Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv 4:56–90 Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta diversity in tropical forest trees. Science 295:666–669 Condron LM, Tiessen H (2005) Interactions of organic phosphorus in terrestrial ecosystems. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CAB International, Wallingford, UK, pp 295–308 Condron LM, Moir JO, Tiessen H, Stewart JWB (1990) Critical evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci Soc Am J 54:1261–1266 Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sharpley AN, Sims JT (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, WI, pp 87–121 Cosgrove DJ (1980) Inositol phosphates: their chemistry, biochemistry and physiology. Elsevier Scientific, Amsterdam Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424 Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation scheme: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214 Dahnke WC, Malcolm JL, Menéndez ME (1964) Phosphorus fractions in selected soil profiles of El Salvador as related to their development. Soil Sci 98:33–38 Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell S (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82 Forster JC, Zech W (1993) Phosphorus status of a soil catena under Liberian evergreen rain forest: results of 31P NMR spectroscopy and phosphorus adsorption experiments. Z Pflanzenernähr Bodenkd 156:61–66 Gee GW, Or D (2002) Particle size analysis. In: Dane JH, Topp C (eds) Methods of soil analysis, part 4—physical methods. Soil Science Society of America, Madison, WI, pp 255–293 Giaveno C, Celi L, Cessa RMA, Prati M, Bonifacio E, Barberis E (2008) Interaction of organic phosphorus with clays extracted from Oxisols. Soil Sci 173:694–706 Harrison AF (1982) Labile organic phosphorus mineralization in relationship to soil properties. Soil Biol Biochem 14:343–351 Harrison AF (1987) Soil organic phosphorus: a review of world literature. CAB International, Wallingford, UK Hawkes GE, Powlson DS, Randall EW, Tate KR (1984) A 31P nuclear magnetic resonance study of the phosphorus species in alkali extracts from soils from long-term field experiments. J Soil Sci 35:35–45 Hill JE, Richardson AE (2007) Isolation and assessment of microorganisms that utilize phytate. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, UK, pp 61–77 Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, London Johnson AH, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499 Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43 Koukol O, Novák F, Hrabal R (2008) Composition of the organic phosphorus fraction in basidiocarps of saprotrophic and mycorrhizal fungi. Soil Biol Biochem 40:2464–2467 Loeppert RH, Inskeep WP (1996) Iron. In: Sparks DL et al (eds) Methods of soil analysis, part 3—chemical methods. Soil Science Society of America, Madison, WI, pp 639–664 Makarov MI, Haumaier L, Zech W (2002) Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biol Biochem 34:1467–1477 McDowell RW, Cade-Menun B, Stewart I (2007) Organic phosphorus speciation and pedogenesis: analysis by solution 31P nuclear magnetic resonance spectroscopy. Eur J Soil Sci 58:1348–1357 Möller A, Kaiser K, Amelung W, Niamskul C, Udomsri S, Puthawong M, Haumaier L, Zech W (2000) Forms of organic C and P extracted from tropical soils as assessed by liquid-state 13C- and 31P-NMR spectroscopy. Aust J Soil Res 38:1017–1035 Murphy PNC, Bell A, Turner BL (2010) Phosphorus speciation in temperate basaltic grassland soils by solution 31P NMR spectroscopy. Eur J Soil Sci 61:638–651 Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycles 18:1–9 Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11 Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE (2007) Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:158–170 Pyke CR, Condit R, Aguilar S, Lao S (2001) Floristic composition across a climatic gradient in a neotropical lowland forest. J Veg Sci 12:553–566 Raboy V (2007) Seed phosphorus and the development of low phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, UK, pp 111–132 Schuur EAG, Chadwick OA, Matson PA (2001) Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:3182–3196 Sharpley AN, Tiessen H, Cole CV (1987) Soil phosphorus forms extracted by soil tests as a function of pedogenesis. Soil Sci Soc Am J 51:362–365 Smeck NE (1985) Phosphorus dynamics in soils and landscapes. Geoderma 36:185–199 Smernik RJ, Dougherty WJ (2007) Identification of phytate in phosphorus-31 nuclear magnetic resonance spectra: the need for spiking. Soil Sci Soc Am J 71:1045–1050 Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook Number 436, 2nd edn. United States Department of Agriculture—Natural Resources Conservation Service, Lincoln, NE Solomon D, Lehmann J, Mamo T, Fritzsche F, Zech W (2002) Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma 105:21–48 Stewart RH, Stewart JL, Woodring WP (1980) Geologic map of the Panama Canal and vicinity, Republic of Panama. Map I-1232. United States Geological Survey, Boulder, CO Sumann M, Amelung W, Haumaier L, Zech W (1998) Climatic effects on soil organic phosphorus in the North American Great Plains identified by phosphorus-31 nuclear magnetic resonance. Soil Sci Soc Am J 62:1580–1586 Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22 Tate KR, Newman RH (1982) Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biol Biochem 14:191–196 Tiessen H (1998) Resilience of phosphorus transformations in tropical forest and derived ecosystems. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems: characteristics. Ecology and management. Springer, New York, pp 92–98 Turner BL (2006) Organic phosphorus in Madagascan rice soils. Geoderma 136:279–288 Turner BL (2007) Inositol phosphates in soil: amounts, forms and significance of the phosphorlyated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, UK, pp 186–207 Turner BL (2008a) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702 Turner BL (2008b) Soil organic phosphorus in tropical forests: an assessment of the NaOH–EDTA extraction procedure for quantitative analysis by solution 31P NMR spectroscopy. Eur J Soil Sci 59:453–466 Turner BL, Richardson AE (2004) Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 68:802–808 Turner BL, Mahieu N, Condron LM (2003a) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci Soc Am J 67:497–510 Turner BL, Mahieu N, Condron LM (2003b) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolution. Soil Sci 168:469–478 Turner BL, Cade-Menun BJ, Westermann DT (2003c) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci Soc Am J 67:1168–1179 Turner BL, Baxter R, Mahieu N, Sjogersten S, Whitton BA (2004) Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)–tundra ecotone. Soil Biol Biochem 36:815–823 Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306 Turner BL, Newman S, Reddy KR (2006) Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry. Environ Sci Technol 40:3349–3354 Turner BL, Condron LM, Richardson SJ, Peltzer DA, Allison VJ (2007) Soil organic phosphorus transformations during pedogenesis. Ecosystems 10:1166–1181 Uriyo AP, Kesseba A (1975) Amounts and distribution of organic phosphorus in some soil profiles in Tanzania. Geoderma 13:201–210 Vincent AG, Turner BL, Tanner EVJ (2010) Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. Eur J Soil Sci 61:48–57 Vitousek PM, Sanford RLJ (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167 Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19 Williams JDH, Walker TW (1967) Comparison of ‘ignition’ and ‘extraction’ methods for the determination of organic phosphate in rocks and soils. Plant Soil 27:457–459 Windsor DM (1990) Climate and moisture availability in a tropical forest, long term record for Barro Colorado Island, Panama. Smithson Contrib Earth Sci 29:1–145 Woodring WP (1958) Geology of Barro Colorado Island. Smithson Miscellaneous Collect 135:1–39