Soil organic carbon stock is improved by cover crops in a tropical sandy soil

Agronomy Journal - Tập 114 Số 2 - Trang 1546-1556 - 2022
Carlos Felipe dos Santos Cordeiro1, Daniel Rodela Rodrigues2, Gustavo Ferreira da Silva1, Fábio Rafael Echer2, Juliano Carlos Calonego1
1College of Agricultural Sciences, Dep. of Crop Science São Paulo State Univ. (UNESP) Botucatu São Paulo 18610−034 Brazil
2Dep. of Agronomy São Paulo Western Univ. Presidente Prudente São Paulo 19067‐175 Brazil

Tóm tắt

AbstractSoil organic matter plays an important role in soil quality. In sandy soils of tropical regions, high biological activity in the soil accelerates mineralization and limits increases in organic matter content. The objective of this study was to evaluate the total organic C stock and the chemical and physical fractions of organic C in a sandy soil in Presidente Bernardes, São Paulo, Brazil, as a function of cover cropping with different combinations of grasses and legumes between 2015 and 2020. The treatments comprised fallow (control), cultivation of a single grass or intercropping of two grasses, one grass and one legume, or a mixture of two grasses and one legume during the offseason (April–September). Intercropping two grasses increased total dry matter production (shoot and root) by 138% and decreased the C/N ratio by 19% compared with the fallow and legume systems. The organic C stock in the soil was 46% higher in the mixed cover crop system (36.5 Mg ha−1) than in the fallow system (25 Mg ha−1). Humic acid (0.78–0.82 g kg−1) and humin (1.68–1.99 g kg−1) were lower in the systems with low dry matter production (fallow and grass + legume). Mineral‐associated C content was 114% higher in the mixed cover crop system than in the fallow system. These results show that cover crops can increase C content in all fractions of organic matter in tropical sandy soil, even in a short period of time (5 yr), and that a mix of cover crops is the best option.

Từ khóa


Tài liệu tham khảo

10.1016/S0016‐7061(03)00186‐1

10.1016/j.catena.2020.104575

Benites V. M., 2017, Serviço Nacional de Pesquisa do Solo. Manual de métodos de análises de solo

10.1016/j.soilbio.2010.01.009

10.2136/sssaj1992.03615995005600030017x

10.3389/fmicb.2020.01045

10.1038/s41467‐019‐09258‐y

10.1016/j.still.2018.04.011

10.1007/s42729‐021‐00494‐0

10.1080/00103624.2021.1885685

10.1016/j.apsoil.2021.104026

10.1002/saj2.20182

10.1038/s41561‐019‐0484‐6

10.1007/s11368‐017‐1704‐6

FAO, 2015, World reference base for soil resources 2014.International soil classification system for naming soils and creating legends for soil maps

10.1016/j.geodrs.2018.e00178

10.1071/SR9940285

10.1002/ldr.2839

10.1016/j.still.2012.07.010

10.1016/j.geoderma.2017.09.043

10.1007/s13593‐020‐0607‐x

10.1002/jpln.200700048

10.2136/sssaj2009.0346

10.1016/j.still.2020.104865

10.1007/978-981-13-0253-4_4

10.2489/jswc.75.2.27A

Malavolta E., 1997, Avaliação do estado nutricional das plantas: princípios e aplicações, 115

10.1007/s42729‐019‐00169‐x

10.1016/j.still.2013.02.008

10.2134/agronj2017.05.0293

10.1016/j.still.2014.01.006

10.1016/j.still.2015.07.020

10.1590/S0006‐87052011000300018

10.1111/sum.12309

10.1016/j.ejsobi.2009.09.004

10.36783/18069657rbcs20200103

10.1016/j.fcr.2020.107947

10.1016/S0016‐7061(96)00036‐5

Stevenson F. J., 1994, Humus chemistry: Genesis, composition, reactions

10.1590/18069657rbcs20160488

10.1111/ejss.13136

10.1590/1809‐4392201305364

10.3390/f9100598