Soil microbial structure and activity in a semiarid rangeland of Patagonia, Argentina: Plant species and defoliation effects
Tài liệu tham khảo
Aerts, 2000, The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns, Adv. Ecol. Res., 30, 1
1995, 576
Ambrosino, 2019, Plant litter decomposition in a semiarid rangeland of Argentina: species and defoliation effects, Rangel. J., 41, 371, 10.1071/RJ18070
Bardgett, 2003, Herbivore‐mediated linkages between aboveground and belowground communities, Ecology, 84, 2258, 10.1890/02-0274
Briske, 1995, Plant response to defoliation: a physiologic, morphologic and demographic evaluation, 635
Brown, 1995, The water relations of range plants: adaptations to water deficits, 291
Busso, 2018, Arid and semiarid rangeland of Argentina, 261
Cabrera, 1976, Regiones fitogeográficas argentinas, 1
Campanella, 2008, Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina, J. Veg. Sci., 19, 75, 10.3170/2007-8-18333
Carrera, 2008, Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina, Plant Soil, 311, 39, 10.1007/s11104-008-9655-8
Carrera, 2005, Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina, Plant Ecol., 181, 139, 10.1007/s11258-005-5322-9
Craine, 1999, Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland, Plant Soil, 207, 77, 10.1023/A:1004417419288
Dam, 2015, Defoliation reduces soil biota – and modifies stimulating effects of elevated CO2, Ecol. Evol., 5, 4840, 10.1002/ece3.1739
Das, 2007, Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream, Appl. Environ. Microbiol., 73, 756, 10.1128/AEM.01170-06
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W. INFOSTAT Versión 2016. Grupo INFOSTAT, FCA, Universidad Nacional de Córdoba, Argentina.
Distel, 1996, Vegetation states and transitions in temperate semiarid rangelands of Argentina, 117
Fontaine, 2003, The priming effect of organic matter: a question of microbial competition?, Soil Biol. Biochem., 35, 837, 10.1016/S0038-0717(03)00123-8
Fultz, 2016, Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: two case studies in the semi-arid Southwest, Appl. Soil Ecol., 99, 118, 10.1016/j.apsoil.2015.10.023
Gavrichkova, 2010, Influence of defoliation on CO2 efflux from soil and microbial activity in a Mediterranean grassland, Agric. Ecosyst. Environ., 136, 87, 10.1016/j.agee.2009.11.015
Giorgetti, 2006, Cattle raising in central, semiarid rangelands of Argentina, Rangelands, 28, 32, 10.2111/1551-501X(2006)28.1[32:CRICSR]2.0.CO;2
Giorgetti, 2000, Phenology of some herbaceous and woody species in Central, Semiarid Argentina, Phyton-Int. J. Exp. Bot., 69, 91
Giorgetti, 1997, The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observations, J. Arid Environ., 36, 623, 10.1006/jare.1996.0220
Grigulis, 2013, Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services, J. Ecol., 101, 47, 10.1111/1365-2745.12014
Guitian, 2000, Plant and soil microbial responses to defoliation in temperate semi-natural grassland, Plant Soil, 220, 271, 10.1023/A:1004787710886
Hamilton, 2001, Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass, Ecology, 82, 2397, 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
Hamilton, 2008, Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland, Soil Biol. Biochem., 40, 2865, 10.1016/j.soilbio.2008.08.007
Heady, 1994
Heuer, 1997, Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Appl. Environ. Microbiol., 63, 3233, 10.1128/aem.63.8.3233-3241.1997
Hossain, 2010, Effects of grassland species on decomposition of litter and soil microbial communities, Ecol. Res., 25, 255, 10.1007/s11284-009-0648-8
Isermeyer, 1952, Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden, Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde, 56, 26, 10.1002/jpln.19520560107
Ithurrart, 2015
Izumi, 2018, Contrasting responses of the bacterial communities in ectomycorrhizal roots and rhizosphere soils to defoliation or winter hardening, Rhizosphere, 8, 8, 10.1016/j.rhisph.2018.08.002
Jones, 1992, 428
Liu, 2007, Responses of microbial biomass and respiration of soil to topography, burning, and nitrogen fertilization in a temperate steppe, Biol. Fertil. Soils, 44, 259, 10.1007/s00374-007-0198-6
Marcos, 2019, Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size, Appl. Soil Ecol., 138, 223, 10.1016/j.apsoil.2019.03.001
Mawdsley, 1997, Continuous defoliation of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and associated changes in the microbial population of an upland grassland soil, Biol. Fertil. Soils, 24, 52, 10.1007/BF01420220
Montecchia, 2011, Multivariate approach to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina, Appl. Soil Ecol., 47, 176, 10.1016/j.apsoil.2010.12.008
Moretto, 2002, Soil nitrogen availability under grasses of different palatability in a temperate semiarid rangeland of central Argentina, Austral Ecol., 27, 509, 10.1046/j.1442-9993.2002.01207.x
Moretto, 2003, Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gynerioides, J. Arid Environ., 55, 503, 10.1016/S0140-1963(02)00271-9
Nakatsu, 2007, Soil microbial community analysis using denaturing gradient gel electrophoresis, Soil Sci. Soc. Am. J., 71, 562, 10.2136/sssaj2006.0080
Peri, 2015, Soil respiration in Patagonian semiarid grasslands under contrasting environmental and use conditions, J. Arid Environ., 119, 1, 10.1016/j.jaridenv.2015.03.008
Prieto, 2011, Soil enzyme and microbial activities in a grazing ecosystem of Patagonian Monte, Argentina, Geoderma, 162, 281, 10.1016/j.geoderma.2011.02.011
Quiroga, 2005, vol. 25
Rademaker, 1999, 1
Saint Pierre, 2004, Direct assessment of competitive ability and defoliation tolerance in perennial grasses, Can. J. Plant Sci., 84, 195, 10.4141/P02-151
2011, 149
Sirotnak, 2000, Direct and indirect effects of herbivores on nitrogen dynamics: voles in riparian areas, Ecology, 81, 78, 10.1890/0012-9658(2000)081[0078:DAIEOH]2.0.CO;2
2014
Stark, 2006, Simulated grazer effects on microbial respiration in a subarctic meadow: implications for nutrient competition between plants and soil microorganisms, Appl. Soil Ecol., 31, 20, 10.1016/j.apsoil.2005.04.002
Studer, 2016, Evidence for direct plant control on rhizosphere priming, Rhizosphere, 2, 1, 10.1016/j.rhisph.2016.10.001
Toledo, 2021, Soil microbial communities respond to an environmental gradient of grazing intensity in south Patagonia Argentina, J. Arid Environ., 184, 104300, 10.1016/j.jaridenv.2020.104300
Wan, 2003, Substrate regulation of soil respiration in tall grass prairie: results of clipping and shading experiment, Global Biogeochem. Cycles, 17, 1, 10.1029/2002GB001971
Wardle, 2002
Wardle, 2004, Ecological linkages between aboveground and belowground biota, Science, 304, 1629, 10.1126/science.1094875
Yan, 2018, Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability, Geoderma, 319, 194, 10.1016/j.geoderma.2018.01.009