Soil microbial inoculation increases corn yield and insect attack

Agronomy for Sustainable Development - Tập 35 - Trang 1511-1519 - 2015
Lea Megali1, Benjamin Schlau2, Sergio Rasmann2,3
1Department of Ecology and Evolution, University of Lausanne UNIL Sorge, Lausanne, Switzerland
2Ecology and Evolutionary Biology, University of California, Irvine, USA
3Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland

Tóm tắt

Effective Microorganisms (EM®) is a “biofertiliser” soil inoculant, marketed as a crop yield enhancer. However, the literature has neither comprehensively reviewed its purported effects on harvests across multiple species nor investigated its effects on plant herbivore defence other than this group’s previous research on tomatoes. Here a meta-analysis of 39 journal articles and a greenhouse experiment with nine crop species afforded a nuanced assessment of Effective Microorganisms’ effects on plant growth and yield. Overall, in line with predictions, Effective Microorganisms showed significant positive effect on yield and growth (0.03 effect sizes increase) in the meta-analysis, and increased growth 16 % in the greenhouse, but with strong, and at times negative, species-specific responses. An additional potential benefit of Effective Microorganisms includes increased defence against herbivore attack, but inoculated corn (Zea mays) in a field and a greenhouse experiment exhibited decreased defences. Specifically, the field experiment demonstrated that Effective Microorganisms treatment corresponded to a 26 % reduction in predatory insect diversity on corn plants, while not improving growth or yield but did increase water uptake. A subsequent greenhouse experiment suggested likely physiological mechanisms behind the loss of predator diversity. When non-inoculated control corn plants were set upon by caterpillars of the herbivorous insect Spodoptera littoralis, the plants increased production of defensive volatile organic compounds (VOCs) by 272 %. Surprisingly, inoculation with Effective Microorganisms rendered greenhouse corn plants 51 % more palatable to S. littoralis. Further localised studies are, therefore, needed to efficiently incorporate Effective Microorganisms with either conventional or sustainable agricultural management systems.

Tài liệu tham khảo

Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12. doi:10.1007/s00253-009-2196-0 Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, Boulder Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770. doi:10.1016/s0734-9750(98)00003-2 Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133(4):705–724. doi:10.1111/j.1399-3054.2008.01136.x Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959. doi:10.1128/aem.71.9.4951-4959.2005 Cóndor Golec AF, Lokare C, González Pérez P (2007) Effective Microorganisms: myth or reality? Rev Peru Biol 14(2):315–319 Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. doi:10.1038/nature10452 Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108(1):3–14. doi:10.1016/s0269-7491(99)00197-9 Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307(5709):550–555. doi:10.1126/science.1106049 Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. doi:10.1007/s13213-010-0117-1 Higa T (2000) What is EM technology? EM World J 1:1–6 Javaid A (2010) Beneficial microorganisms for sustainable agriculture. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming, vol 4. Sustainable agriculture reviews. Springer, Netherlands, pp 347–369. doi:10.1007/978-90-481-8741-6_12 Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13. doi:10.1016/j.femsec.2003.11.012 Kaplan I, Lewis D (2015) What happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape. Pest Manag Sci 71(1):139–150. doi:10.1002/ps.3779 Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago Karl TR, Trenberth KE (2003) Modern global climate change. Science 302(5651):1719–1723. doi:10.1126/science.1090228 Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25(2):348–357. doi:10.1111/j.1365-2435.2010.01818.x Kong L (2014) Maize residues, soil quality, and wheat growth in China. A review. Agron Sustain Dev 34(2):405–416. doi:10.1007/s13593-013-0182-5 Lentendu G, Wubet T, Chatzinotas A, Wilhelm C, Buscot F, Schlegel M (2014) Effects of long-term differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Mol Ecol 23(13):3341–3355. doi:10.1111/mec.12819 Mayer J, Scheid S, Widmer F, Fließbach A, Oberholzer H-R (2010) How effective are ‘Effective Microorganisms® (EM)’? Results from a field study in temperate climate. Appl Soil Ecol 46(2):230–239. doi:10.1016/j.apsoil.2010.08.007 Megali L, Glauser G, Rasmann S (2014) Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron Sustain Dev 34(3):649–656. doi:10.1007/s13593-013-0187-0 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. 2.0-10 edn http://vegan.r-forge.r-project.org/ Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15(9):507–514. doi:10.1016/j.tplants.2010.05.007 Stoate C, Boatman ND, Borralho RJ, Carvalho CR, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63(4):337–365. doi:10.1006/jema.2001.0473 Team RDC (2011) Vienna, Austria: R foundation for statistical computing Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi:10.1038/nature01014 Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press van de Voorde TFJ, van der Putten WH, Bezemer TM (2012) Soil inoculation method determines the strength of plant–soil interactions. Soil Biol Biochem 55:1–6. doi:10.1016/j.soilbio.2012.05.020 Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277(5325):494–499. doi:10.1126/science.277.5325.494 Wheeler RE (2010) multResp() lmPerm. The R project for statistical computing http://www.r-project.org/ Yeo A (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78(1-4):159–174