Soil mass and grind size used for sample homogenization strongly affect permanganate-oxidizable carbon (POXC) values, with implications for its use as a national soil health indicator
Tài liệu tham khảo
Bell, 1998, The role of active fractions of soil organic matter in physical and chemical fertility of Ferrosols, Aust. J. Soil Res., 36, 809, 10.1071/S98020
Blair, 1995, Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems, Aust. J. Agric. Res., 46, 1459, 10.1071/AR9951459
Bongiorno, 2019, Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe, Ecol. Ind., 99, 38, 10.1016/j.ecolind.2018.12.008
Bose, 1999, Lignin analysis by permanganate oxidation. II. Lignins in Acidic Organosolv Pulps, Holzforschung, 53, 603, 10.1515/HF.1999.100
Bünemann, 2018, Soil quality - a critical review, Soil Biol. Biochem., 120, 105, 10.1016/j.soilbio.2018.01.030
Calderón, 2017, Quantification of Soil Permanganate Oxidizable C (POXC) using infrared spectroscopy, Soil Sci. Soc. Am. J., 81, 277, 10.2136/sssaj2016.07.0216
Cotrufo, 2013, The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?, Glob. Chang. Biol., 19, 988, 10.1111/gcb.12113
Cotrufo, 2015, Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776, 10.1038/ngeo2520
Culman, 2012, Procedure for the determination of permanganate oxidizable carbon, KBS POXC Protoc. – Last Revis., 1, 1
Culman, 2012, Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management, Soil Sci. Soc. Am. J., 76, 494, 10.2136/sssaj2011.0286
de Moraes Sá, 2014, Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol, Soil Tillage Res., 136, 38, 10.1016/j.still.2013.09.010
EPA, 2016. ENVIRONMENTAL PROTECTION AGENCY. Title 40 - Protection of Environment Chapter I - Subchapter D - WATER PROGRAMS. Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11. <https://www.govinfo.gov/content/pkg/CFR-2016-title40-vol25/pdf/CFR-2016-title40-vol25-part136-appB.pdf>.
EPA, 2006. Region III Quality Assurance MDL Factsheet. “DL- MDL- PQL - What the “L” is going on? What does all this alphabet soup really mean?”. <https://www.epa.gov/sites/production/files/2015-06/documents/whatthel.pdf>.
Gasch, 2020, Permanganate oxidizable carbon for soil health: does drying temperature matter?, Agric. Environ. Lett., 5, 10.1002/ael2.20019
Gruver, 2015, Evaluating the sensitivity and linearity of a permanganate-oxidizable carbon method, Commun. Soil Sci. Plant Anal., 46, 490, 10.1080/00103624.2014.997387
Hanegraaf, M. Van den Elsen, E., De Haan, J. Visser S.M., 2019 Bodemkwaliteitsbeoordeling van landbouwgronden in Nederland – indicatorset en systematiek, versie 1.0 Wageningen Research, Rapport. https://doi.org/10.18174/498307.
Hurisso, 2016, Comparison of permanganate-oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization, Soil Sci. Soc. Am. J., 80, 1352, 10.2136/sssaj2016.04.0106
Hurisso, 2018, Absolute values and precision of emerging soil health indicators as affected by soil sieve size, Commun. Soil Sci. Plant Anal., 49, 1934, 10.1080/00103624.2018.1492597
Hurisso, 2018, Repeatability and spatiotemporal variability of emerging soil health indicators relative to routine soil nutrient tests, Soil Sci. Soc. Am. J., 82, 939, 10.2136/sssaj2018.03.0098
Lefroy, 1993, Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance, Plant Soil, 155–156, 399, 10.1007/BF00025067
Margenot, 2016, Relationships between labile soil organic matter and nematode communities in a California oak woodland, Nematology, 18, 1231, 10.1163/15685411-00003027
Margenot, 2017, Biochemical proxies indicate differences in soil C cycling induced by long-term tillage and residue management in a tropical agroecosystem, Plant Soil, 420, 315, 10.1007/s11104-017-3401-z
Marriott, 2006, Total and labile soil organic matter in organic and conventional farming systems, Soil Sci. Soc. Am. J., 70, 950, 10.2136/sssaj2005.0241
Moebius-Clune, B.N., Moebius-Clune, D., Gugino, B., Idowu, O.J., Schindelbeck, R.R., Ristow, A.J., van Es, H., Thies, J., Shayler, H., McBride, M., Wolfe, D., Abawi, G., 2016. Comprehensive Assessment of Soil Health - The Cornell Framework Manual. https://dx.doi.org/10.1080/00461520.2015.1125787.
Rennert, 2017, Permanganate-oxidizable soil organic matter in floodplain soils, Catena, 149, 381, 10.1016/j.catena.2016.10.020
Roudier, 2012, A conditioned Latin hypercube sampling algorithm incorporating operational constraints, 227
Romero, 2018, Patterns of change in permanganate oxidizable soil organic matter from semiarid drylands reflected by absorbance spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry, Org Geochem., 120, 19, 10.1016/j.orggeochem.2018.03.005
Schmidt, 2011, Persistence of soil organic matter as an ecosystem property, Nature, 478, 49, 10.1038/nature10386
Schindelbeck, 2016
Schoeneberger, 2012
Stockmann, 2013, The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agric. Ecosyst. Environ., 164, 80, 10.1016/j.agee.2012.10.001
Soil Health Institute, 2017. Enriching Soil, Enhancing Life: An Action Plan for Soil Health. Ed. C. W. Honeycutt. Morrisville. <https://soilhealthinstitute.org/wp-content/uploads/2017/05/Action-Plan-FINAL-for-flipbook-3.pdf>.
Soil Survey Staff, 2014a. Kellogg Soil Survey Laboratory Methods Manual. In: R. Burt and S. S. S. (ed.). editors, Soil Survey Investigations Report No. 42, Version 5.0. USDA NRCS. <https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1253871.pdf>.
Soil Survey Staff. 2014b. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.
Stott, D.E. 2019. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. U.S. Department of Agriculture, Natural Resources Conservation Service <https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=43754.wba>.
Thoumazeau, 2019, Biofunctool®: a new framework to assess the impact of land management on soil quality. Part A: concept and validation of the set of indicators, Ecol. Ind., 97, 100, 10.1016/j.ecolind.2018.09.023
Tirol-Padre, 2004, Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon, Soil Sci. Soc. Am. J., 68, 969, 10.2136/sssaj2004.9690
Van den Elsen, E., Knotters, M., Heinen, M., Römkens, P.F.A.M., Bloem, J., Korthals, G.W. 2019. Noodzakelijke indicatoren voor de beoordeling van de gezondheid van Nederlandse landbouwbodems; De meest relevante fysische, chemische en biologische indicatoren voor het meten van de bodemgezondheid. Rapport 2944, Wageningen Environmental Research. <http://edepot.wur.nl/475874>.
Wade, 2018, Sources of variability that compromise mineralizable carbon as a soil health indicator, Soil Sci. Soc. Am. J., 82, 243, 10.2136/sssaj2017.03.0105
Wade, 2020, Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: an interlab comparison across soils, Geoderma, 366, 10.1016/j.geoderma.2020.114235
Weil, 2003, Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use, Am. J. Altern. Agric., 18, 3, 10.1079/AJAA2003003
Wills, S., Pulleman, M., Ferguson, R. (2020). “USDA POX C samples”, Mendeley Data, v1 https://doi.org/10.17632/ky83vw36t5.1.
