Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lập bản đồ nguy cơ xói mòn đất bằng phương pháp phân tích hiệp hội và hồi quy logistic: Nghiên cứu trường hợp lưu vực Haffouz, Trung Tunisia
Tóm tắt
Mục đích của nghiên cứu này là phát triển một phương pháp toàn diện để đánh giá nguy cơ xói mòn đất. Hai mô hình được triển khai ở lưu vực Haffouz (Trung Tunisia), nơi thường xuyên phải chịu các quá trình xói mòn. Mô hình đầu tiên là một phương pháp đa tham số dựa trên kiến thức của chuyên gia và Quy trình Phân tích Hiệp hội (AHP), trong khi mô hình thứ hai là một kỹ thuật thống kê dựa trên hồi quy logistic (LR). Sáu tham số (độ dốc, lượng mưa hàng năm, lithofacies, chỉ số thực vật, mật độ thoát nước và sử dụng đất) được sử dụng cho cả hai phương pháp. Một bản đồ lớp chủ đề được tạo ra cho mỗi tham số bằng cách sử dụng hệ thống thông tin địa lý (GIS) và viễn thám, trong khi hệ số trọng số của mỗi phương pháp được sử dụng để biên soạn các bản đồ cuối cùng của AHP và LR. Cả hai mô hình đều đưa ra kết quả tương tự cho thấy rằng, nhìn chung, điều kiện nguy cơ xói mòn đất ở khu vực nghiên cứu là ở mức độ vừa phải. Các phương pháp được đề xuất cũng dẫn đến việc xác định các khu vực xói mòn nặng, đòi hỏi phải có hành động ngay lập tức.
Từ khóa
#xói mòn đất #mô hình AHP #hồi quy logistic #GIS #Haffouz #TunisiaTài liệu tham khảo
Abaoui J, El Ghmari A, El Harti A, Bachaoui EM, Bannari A, El Bouadili A (2005) Cartographie de l’érosion hydrique en zone montagneuse: Cas du bassin versant des Ait Bou Goumez, Haut Atlas, Maroc. Estud Geol 61:33–39
Ahmad S, Muddassir SM (2014) Digital image processing of remote sensing satellite data for information extraction. First International Conference on Modern Communication & Computing Technologies (MCCT’14), 26-28 February, 2014, Nawabshah, Pakistan
Akgün A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51:1348–1377. doi:10.1007/s00254-006-0435-6
Akgün A, Turk N (2011) Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region. NW Turkey. Comput Geosci 9:1515–1524
Alexakis DD, Hadjimitsis DG, Agapiou A (2013) Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos Res 131:108–124
Arar A, Chenchouni H (2014) A “simple” geomatics-based approach for assessing water erosion hazard at montane areas. Arab J Geosci 7:1–12
Arekhi S, Niazi Y, Kalteh AM (2012) Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran. Arab J Geosci 5:285–296
Bachaoui B, Bachaoui EM, El Harti A, Bannari A, El Ghmari A (2007) Cartographie des zones à risque d’érosion hydrique: exemple du haut Atlas marocain. Teledetection 7:393–404
Bathrellos GD, Skilodimou HD, Chousianitis KG (2010) Soil erosion assessment in southern Evia Island using USLE and GIS. Bulletin of the Geological Society of Greece. Proceedings of the 12th International Congress, Patras. May, 2010
Bayramin I, Erpul G (2006) Use of CORINE methodology to assess soil erosion risk in the semi-arid area of Beypazari. Turk J Agric For 30:81–100
Begueria S (2006) Identifying erosion areas at basin scale using remote sensing data and GIS: a case study in a geologically complex mountain basin in the Spanish Pyrenees. Int J Remote Sens 27:4585–4598
Berkane A, Yahiaou A (2007) L’érosion dans les Aurès. Sécheresse 18:213–216
Bou Kheir R, Michel-Claude S, Amin K, Mohamad F, Talal D (2001) Apport de la télédétection pour la modélisation de l’érosion hydrique des sols dans la région côtière du Liban. Teledetection 2:79–90
Bou Kheir R, Abdallah C, Khawlie M (2008) Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Eng Geol 99:239–254
Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364
Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228
de Graaffa J, Aklilu A, Ouessar M, Asins-Velis S, Kesslera A (2013) The development of soil and water conservation policies and practices in five selected countries from 1960 to 2010. Land Use Policy 32:165–174
Eastman JR (1997) IDRISI for Windows version 2.0. Tutorial exercises. Worcester-MA, Graduate School of Geography, Clark University. p 192
Gobin A, Jones R, Kirkby M, Campling P, Govers G, Kosmas C, Gentile AR (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Pol 7:25–38
Grimm M, Jones R, Montanarella L (2002) Soil erosion risk in Europe. EUR 19939 EN. European Commission & Joint Research Centre, Italy
Guidoum A, Nemouchi A, Hamlat A (2013) Modeling and mapping of water erosion in north eastern Algeria using a seasonal multicriteria approach. Arab J Geosci. doi:10.1007/s12517-013-1112-1
Le Bissonnais YL, Montier C, Jamagne M, Daroussin J, King D (2002) Mapping erosion risk for cultivated soil in France. Catena 46:207–220
Malczewski J (2000) On the use of weighted linear combination method in GIS: common and best practice approaches. Trans GIS 4:5–22
Merritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environ Model Softw 18:761–799
Morgan RPC (1995) Soil erosion and conservation. Longman, London, pp 23–37
Mosbahi M, Benabdallah S, Boussema MR (2013) Assessment of soil erosion risk using SWAT model. Arab J Geosci 6:4011–4019
Naqvi HR, Mallick J, Devi LM, Siddiqui MA (2013) Multi-temporal annual soil loss risk mapping employing Revised Universal Soil Loss Equation (RUSLE) model in Nun Nadi Watershed, Uttrakhand (India). Arab J Geosci 6:4045–4056
Nekhay O, Arriaza M, Boerboom L (2009) Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations. J Environ Manag 90:3091–3104
Nigel R, Rughooputh S (2010) Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology 114:101–114
Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map on the status of human induced soil degradation, with explanatory note (second revised edition). ISRIC Wageningen, UNEP, Nairobi
Park S, Oh C, Jeon S, Jung H, Choi C (2011) Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J Hydrol 399:263–273
Perović V, Životić L, Kadović R, Đorđević A, Jaramaz D, Mrvić V, Todorović M (2013) Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environ Earth Sci 68:115–128
Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF (2012) Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia. Environ Monit Assess 184:715–727. doi:10.1007/s10661-011-1996-8
Prasannakumar V, Vijith H, Abinod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3:209–215. doi:10.1016/j.gsf.2011.11.003
Renard K.G., Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook, No.703, US Department of Agriculture, Washington DC
Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci 63:49–63
Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
Saaty TL, Vargas LG (1991) Prediction, projection, and forecasting, applications of the analytic hierarchy process in economics, finance, politics, games, and sports. Kluwer, Boston, p 251
Sharma R, Ghosh A, Joshi PK (2013) Decision tree approach for classification of remotely sensed satellite data using open source support. J Earth Syst Sci 122:237–1247
Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New York
Smith SJ, Williams JR, Menzel RG, Coleman GA (1984) Prediction of sediment yield from southern plains grasslands with the Modified Universal Soil Loss Equation. J Range Manag 37:295–297
Terranova O, Antronico L, Coscarelli R, Iaquinta P (2009) Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: an application model for Calabria (southern Italy). Geomorphology 112:228–245
Tian YC, Zhou YM, Wu BF, Zhou WF (2009) Risk assessment of water soil erosion in upper basin of Miyun Reservoir, Beijing, China. Environ Geol 57:937–942
UNEP (2008) Africa: atlas of our changing environment. Division of early warning and assessment (DEWA). United Nations Environment Programme (UNEP). Nairobi 00100, Kenya
Vijith H, Suma M, Rekha VB, Shiju C, Rejith PG (2012) An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS. Arab J Geosci 5:797–805. doi:10.1007/s12517-010-0265-4
Voogd H (1983) Multicriteria evaluation for urban and regional planning. Pion, London
Vrieling A (2006) Satellite remote sensing for water erosion assessment: a review. Catena 65:2–18
Wang J, Rich PM, Price KP, Kettle WD (2004) Relations between NDVI and tree productivity in the central great plains. Int J Remote Sens 25:3127–3138
Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook no 537, U.S. Department of Agriculture, Washington DC
Wu Q, Wang M (2007) A framework for risk assessment on soil erosion by water using an integrated and systematic approach. J Hydrol 337:11–21