Soil contamination with phenanthrene induces maize mycorrhiza growth suppression
Tài liệu tham khảo
Ahmad, 2017, Remediation of organic and inorganic pollutants from soil: the role of plant-bacteria partnership, 197
Alvarado-Herrejón, 2019, Relation between arbuscular mycorrhizal fungi, root-lesion nematodes and soil characteristics in maize agroecosystems, Appl. Soil Ecol., 135, 1, 10.1016/j.apsoil.2018.10.019
Aranda, 2013, Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions, Environ. Poll., 181, 182, 10.1016/j.envpol.2013.06.034
Arriagada, 2014, Influence of an organic amendment comprising saprophytic and mycorrhizal fungi on soil quality and growth of Eucalyptus globulus in the presence of sewage sludge contaminated with aluminium, Arch. Agron Soil Sci., 60, 1229, 10.1080/03650340.2013.878455
Besalatpour, 2008, Germination and growth of selected plants in a petroleum contaminated calcareous soil, Soil Sediment Contam., 17, 665, 10.1080/15320380802425113
Bukovská, 2016, Organic nitrogen-driven stimulation of arbuscular mycorrhizal fungal hyphae correlates with abundance of ammonia oxidizers, Front. Microbiol., 7, 711, 10.3389/fmicb.2016.00711
Calonne, 2014, The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo [a] pyrene oxidative stress, Phytochemistry, 97, 30, 10.1016/j.phytochem.2013.10.014
Diacono, 2010, Long-term effects of organic amendments on soil fertility, A review. Agron. Sustain. Dev., 30, 401, 10.1051/agro/2009040
Dubrovskaya, 2016, Changes in phytotoxicity of polycyclic aromatic hydrocarbons in the course of microbial degradation, Russ. J. Plant Physiol., 63, 172, 10.1134/S1021443716010052
Gao, 2011, Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene, J. Hazard Mater., 185, 703, 10.1016/j.jhazmat.2010.09.076
Gaspar, 2002, Effect of phenanthrene and Rhodotorula glutinis on arbuscular mycorrhizal fungus colonization of maize roots, Mycorrhiza, 12, 55, 10.1007/s00572-001-0147-4
Giovannetti, 1980, An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots, New Phytol., 489–500
Guo, 2017, The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure, Ecol. Eng., 99, 22, 10.1016/j.ecoleng.2016.11.018
Hawkes, 2008, Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus, Global Change Biol., 14, 1181, 10.1111/j.1365-2486.2007.01535.x
Hristozkova, 2016, Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development, Appl. Soil Ecol., 101, 57, 10.1016/j.apsoil.2016.01.008
Jaramillo-López, 2015, Impacts of Bokashi on survival and growth rates of Pinus pseudostrobus in community reforestation projects, J. Environ. Manag., 150, 48, 10.1016/j.jenvman.2014.11.003
Johnson, 2015, Mycorrhizal phenotypes and the law of the minimum, New Phytol., 205, 1473, 10.1111/nph.13172
Kohler, 2015, The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing, Sci. Total Environ., 514, 42, 10.1016/j.scitotenv.2015.01.085
Kormanik, 1982, Quantification of vesicular arbuscular mycorrhiza in plant roots, 37
Kosnar, 2018, Removal of soil polycyclic aromatic hydrocarbons derived from biomass fly ash by plants and organic amendments, Plant Soil Environ., 64, 88, 10.17221/39/2018-PSE
Kumari, 2019, Comparative assessment of PAHs reduction in soil by growing Zea mays L. Augmented with microbial consortia and fertilizer: modulation in uptake and antioxidant defense response, Polycycl. Aromat. Comp., 1–18
Lagos, 2021, Inoculation of Triticum aestivum L. (Poaceae) with plant-growth-promoting fungi alleviates plant oxidative stress and enhances phenanthrene dissipation in soil, Agronomy, 11, 411, 10.3390/agronomy11030411
Lagos, 2018, Dual inoculation with mycorrhizal and saprotrophic fungi suppress the maize growth and development under phenanthrene exposure, J. Soil Sci. Plant Nutr., 18, 721
Lenth, 2018, Package ‘lsmeans’, Am. Statistician, 34, 216
Li, 2008, Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population, Environ. Res., 107, 320, 10.1016/j.envres.2008.01.013
Liu, 2006, Distribution and characterization of polycyclic aromatic hydrocarbon compounds in airborne particulates of East Asia, China Particuol., 4, 283, 10.1016/S1672-2515(07)60277-2
Liu, 2015, Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species, PloS One, 10, 10.1371/journal.pone.0120369
López-Carmona, 2019, Maize plant growth response to whole rhizosphere microbial communities in different mineral N and P fertilization scenarios, Rhizosphere, 9, 38, 10.1016/j.rhisph.2018.11.004
Lu, 2011, Comparison of polycyclic aromatic hydrocarbon pollution in Chinese and Japanese residential air, J. Environ. Sci., 23, 1512, 10.1016/S1001-0742(10)60589-X
Lukić, 2016, Evaluation of PAH removal efficiency in an artificial soil amended with different types of organic wastes, EuroMediterr. J. Environ. Integr., 1, 5, 10.1007/s41207-016-0001-x
Maliszewska-Kordybach, 1999, Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air, Pol. J. Environ. Stud., 8, 131
Muratova, 2003, Plant–rhizosphere-microflora association during phytoremediation of PAH-contaminated soil, Int. J. Phytoremediation, 5, 137, 10.1080/713610176
Pašková, 2006, Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N‐heterocyclic derivatives, Environ. Toxicol. Chem. Int. J., 25, 3238, 10.1897/06-162R.1
Qin, 2016, Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation, Front. Microbiol., 7, 939, 10.3389/fmicb.2016.00939
2013
Raya-Hernández, 2020, Field evidence for maize-mycorrhiza interactions in agroecosystems with low and high P soils under mineral and organic fertilization, Appl. Soil Ecol., 149, 103511, 10.1016/j.apsoil.2020.103511
Ravindra, 2008, Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation, Atmos. Environ., 42, 2895, 10.1016/j.atmosenv.2007.12.010
Sarabia, 2017, Mineral phosphorus fertilization modulates interactions between maize, rhizosphere yeasts and arbuscular mycorrhizal fungi, Rhizosphere, 4, 89, 10.1016/j.rhisph.2017.09.001
Smith, 1997
Smith, 2008
Ukalska-Jaruga, 2020, Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material, J. Soils Sediments, 20, 836, 10.1007/s11368-019-02455-8
Vásquez-Murrieta, 2016, 329
Verdin, 2006, Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation, Mycorrhiza, 16, 397, 10.1007/s00572-006-0055-8
Wan, 2003, Effect of organic waste amendments on degradation of PAHs in soil using thermophilic composting, Environ. Technol., 24, 23, 10.1080/09593330309385532
Wassenberg, 2004, Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus, Environ. Health Perspect., 112, 1658, 10.1289/ehp.7168
Wild, 1995, Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget, Environ. Poll., 88, 91, 10.1016/0269-7491(95)91052-M
Wu, 2014, Effects of inoculation of PAH-degrading bacteria and arbuscular mycorrhizal fungi on responses of ryegrass to phenanthrene and pyrene, Int. J. Phytoremediation, 16, 109, 10.1080/15226514.2012.759526