Soil-based automated irrigation for a nectarine orchard in two water availability scenarios
Tóm tắt
This work studies the feasibility of using automated drip irrigation based on the volumetric soil water content measured with capacitance probes in early maturing nectarine trees (Prunus persica L. Batsch, cv. ‘Flariba’) grown in a clay–loam soil in Mediterranean conditions. An automated irrigation treatment (AUTO), based on the management allowed depletion (MAD) concept (with a feed-back control system), was compared with an irrigation-scheduling method based on the conventional crop evapotranspiration (100% ETc) as Control, under high (HWA) and low (LWA) water availability scenarios, each during three consecutive growing seasons. With HWA (no water restriction), the AUTO treatment maintained the soil water content at near field capacity (α = 10% depletion of available soil water content), and there were no significant differences between treatments in terms of the plant–soil water status, nectarine yield, or fruit quality parameters. Under LWA conditions (water deficit), the AUTO treatment (α = 10% during pre-harvest and 30% post-harvest) provided 43% less water than the Control, promoting a moderate plant water deficit, which led to a decrease in vegetative growth (winter pruning and tree canopy cover) but no significant differences in total yield and fruit quality parameters (although the total soluble solid content increased). The water use efficiency values in the AUTO treatment increased by an average of 34%. It was concluded that automated irrigation, based on MAD seasonal threshold values and monitored by means of real-time soil water content sensors, could be considered a promising tool for application in semi-arid Mediterranean agro-systems subjected to water scarcity.
Tài liệu tham khảo
Abrisqueta JM, Mounzer O, Álvarez S, Conejero W, García Y, Tapia LM, Vera J, Abrisqueta I, Ruiz-Sánchez MC (2008) Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agric Water Manag 95:959–967. https://doi.org/10.1016/j.agwat.2008.03.003
Abrisqueta I, Tapia LM, Conejero W, Sánchez-Toribio MI, Abrisqueta JM, Vera J, Ruiz-Sánchez MC (2010) Response of early-maturing peach [Prunus persica (L.)] trees to deficit irrigation. Span J Agric Res 8(S2):30–39. https://doi.org/10.5424/sjar/201008s2-1345
Abrisqueta I, Vera J, Tapia LM, Abrisqueta JM, Ruiz-Sánchez MC (2012) Soil water content criteria for peach trees water stress detection during the postharvest period. Agric Water Manag 104:62–67. https://doi.org/10.1016/j.agwat.2011.11.015
Abrisqueta I, Abrisqueta J, Tapia LM, Munguía J, Conejero W, Vera J, Ruiz-Sánchez MC (2013) Basal crop coefficients for early-season peach trees. Agric Water Manag 121:158–163. https://doi.org/10.1016/j.agwat.2013.02.001
Abrisqueta I, Conejero W, Valdés-Vela M, Vera J, Ortuño MF, Ruiz-Sánchez MC (2015) Stem water potential estimation of drip-irrigated early-maturing peach trees under Mediterranean conditions. Comput Electron Agric 114:7–13. https://doi.org/10.1016/j.compag.2015.03.004
Abrisqueta I, Conejero W, López-Martínez L, Vera J, Ruiz-Sánchez MC (2017) Root and aerial growth in early-maturing peach trees under two crop load treatments. Span J Agric Res 15(2):e0803. https://doi.org/10.5424/sjar/2017152-10714
Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations, Rome, Italy
Allen RG, Pereira LS, Smith M, Raes D, Wright JL (2005) FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J Irrig Drain Eng 131:2–13. https://doi.org/10.1061/(asce)0733-9437(2005)131:1(2)
Balsalobre N, Koptsyukh E, Ruiz-Sánchez MC, Vera J, Conejero W, Nicolás MJ (2018) Riego deficitario y raíces de nectarinos. V Congreso IDIES “I+D en Institutos de Enseñanza Secundaria” Murcia, 26 junio 2018. ISBN: 978-84-09-03063-7
Bellvert J, Marsal J, Girona J, González-Dugo V, Fereres E, Ustin SL, Zarco-Tejada PJ (2016) Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. Remote Sens 8:39. https://doi.org/10.3390/rs8010039
Berman ME, DeJong TM (2003) Seasonal patterns of vegetative growth and competition with reproductive sinks in peach (Prunus persica). J Hortic Sci Biotech 78(3):303–309. https://doi.org/10.1080/14620316.2003.11511622
Campbell GS, Campbell MD (1982) Irrigation scheduling using soil moisture measurements: theory and practice. Adv Irrig. https://doi.org/10.1016/b978-0-12-024301-3.50008-3
Chalmers DJ, Mitchell PD, Van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J Am Soc Hortic Sci 106:307–312
Conesa MR, Conejero W, Vera J, Ramírez-Cuesta JM, Ruiz-Sánchez MC (2019a) Terrestrial and remote indexes to assess moderate deficit irrigation in early-maturing nectarine trees. Agronomy 9(10):630. https://doi.org/10.3390/agronomy9100630
Conesa MR, Martínez-López L, Conejero W, Vera J, Ruiz-Sánchez MC (2019b) Summer pruning of early-maturing Prunus persica: water implications. Sci Hort 256:108539. https://doi.org/10.1016/j.scienta.2019.05.066
Conesa MR, Conejero W, Vera J, Ruiz-Sánchez MC (2020) Effects of postharvest water deficits on the physiological behavior of early-maturing nectarine trees. Plants 9:1104. https://doi.org/10.3390/plants9091104
Conesa MR, Conejero W, Vera J, Agulló V, García-Viguera C, Ruiz-Sánchez MC (2021) Irrigation management practices in nectarine fruit quality at harvest and after cold storage. Agric Water Manag 243:106519. https://doi.org/10.1016/j.agwat.2020.106519
Crisosto CH, Johnson RS, Luza JG, Crisosto GM (1994) Irrigation regimes affect fruit soluble solids concentration and rate of water loss of ‘O’Henry’ peaches. HortSci 29:1169–1171. https://doi.org/10.21273/hortsci.29.10.1169
De la Rosa JM, Conesa MR, Domingo R, Torres R, Pérez-Pastor A (2013) Feasibility of using trunk diameter fluctuations and stem water potential reference lines for irrigation scheduling of early nectarine trees. Agric Water Manag 126:133–141. https://doi.org/10.1016/j.agwat.2013.05.009
De la Rosa JM, Conesa MR, Domingo R, Pérez-Pastor A (2014) A new approach to ascertain the sensitivity to water stress of different plant water indicators in extra-early nectarine trees. Sci Hortic 169:147–153. https://doi.org/10.1016/j.scienta.2014.02.021
De la Rosa JM, Domingo R, Gómez-Montiel J, Pérez-Pastor A (2015) Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees. Agric Water Manag 152:207–216. https://doi.org/10.1016/j.agwat.2015.01.018
De la Rosa JM, Conesa MR, Domingo R, Aguayo E, Falagán E, Pérez-Pastor A (2016) Combined effects of deficit irrigation and crop level on early nectarine trees. Agric Water Manag 170:120–132. https://doi.org/10.1016/j.agwat.2016.01.012
DeJong TM (1986) Effects of reproductive and vegetative sink activity on leaf conductance and water potential in Prunus persica (L) Batsch. Sci Hortic 29:131–137. https://doi.org/10.1016/0304-4238(86)90039-7
Dichio B, Xiloyannis C, Sofo A, Montanar G (2007) Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 290:127. https://doi.org/10.1007/s11104-006-9144-x
Domínguez-Niño JM, Oliver-Manera J, Girona J, Casadesús J (2020) Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors. Agric Water Manag 228:105880. https://doi.org/10.1016/j.agwat.2019.105880
Evett SR, Laurent, JP, Cepuder P, Hignett C (2002) Neutron scattering, capacitance, and TDR soil water content measurements compared on four continents. In: Proc. 17th World Congress of Soil Science. Aug. 14–21. Bangkok, Thailand. p 1021–1031
Evett S, Tolk JA, Howell TA (2006) Soil profile water content determination. Vadose Zone J 5:894
Falagán N, Artés F, Artés-Hernández F, Gómez PA, Pérez-Pastor A, Aguayo E (2015) Comparative study on postharvest perfomance of nectarines grown under regulated deficit irrigation. Post Biol Techn 110:24–32. https://doi.org/10.1016/j.postharvbio.2015.07.011
Falagán N, Artés F, Gómez PA, Artés-Hernández F, Conejero W, Aguayo E (2016) Deficit irrigation strategies enhance health-promoting compounds through the intensification of specific enzymes in early peach. J Sci Food Agric 96:1803–1813. https://doi.org/10.1002/jsfa.7290
Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58(435):147–159. https://doi.org/10.1093/jxb/erl165
Fernández-García I, Lecina S, Ruiz-Sánchez MC, Vera J, Conejero W, Conesa MR, Domínguez A, Pardo JJ, Llélis BC, Montesinos P (2020) Trends and challenges in irrigation scheduling in the semi-arid area of Spain. Water 12:785. https://doi.org/10.3390/w12030785
Girona J, Fereres E (2012) Peach. In: Steduto P, Hsiao TC, Fereres E, Raes D (eds) Crop yield response to water. FAO Irrigation and Drainage Paper No. 66, Rome, pp 266–280
Girona J, Gelly M, Mata M, Arbonés A, Rufat J, Marsal J (2005) Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric Water Manag 72:97–108. https://doi.org/10.1016/j.agwat.2004.09.011
Hsiao TC (1990) Measurement of tree water status. In: Steward BA, Nielsen DR (eds) Irrigation of Agricultural Crops Agronomy Monograph No.30. American Society of Agronomy, Madison, WI, pp 243–279
IPCC (2014) Intergovernmental Panel on Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core writing team, R.K. Pachauri and L.A. Meyer (eds). IPCC, Geneva, Switzerland, p 151
Lampinen BD, Shackel KA, Southwick SM, Olson B, Yeager JT (1995) Sensitivity of yield and fruit quality of French prune to water deprivation at different fruit growth stages. J Am Soc Hort Sci 120:139–147. https://doi.org/10.21273/jashs.120.2.139
López G, Arbonés A, del Campo J, Mata M, Vallberdy X, Girona J, Marsal J (2008) Response of peach trees to regulated deficit irrigation during stage II of fruit development and summer pruning. Span J Agr Res 6(3):479–491. https://doi.org/10.5424/sjar/2008063-340
López G, Echeverría G, Bellvert J, Mata M, Behboudian MH, Girona J, Marsal J (2016) Water stress for a short period before harvest in nectarine: yield, fruit composition, sensory quality, and consumer acceptance of fruit. Sci Hortic 211:1–7. https://doi.org/10.1016/j.scienta.2016.07.035
Martínez-Gimeno MA, Jiménez-Bello MA, Lidón A, Manzano J, Badal E, Pérez-Pérez JG, Bonet L, Intringliolo DS, Esteban A (2020) Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agric Water Manag 235:e106151. https://doi.org/10.1016/j.agwat.2020.106151
McCutchan H, Shackel KA (1992) Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J Am Soc Hortic Sci 117:607–611. https://doi.org/10.21273/jashs.117.4.607
Méndez A, Blaya JM, López-Torres FJ, Rodríguez E, Conejero W, Vera J, Ruiz-Sánchez MC (2015) Distribución de raíces de nectarino en distintas condiciones de riego. II Congreso IDIES Murcia. https://doi.org/10.13140/RG.2.1.3133.8720
Merriam JL (1966) A management control concept for determining the economical depth and frequency of irrigation. Transactions ASAE 9(4):492–498. https://doi.org/10.13031/2013.40014
Millán S, Casadesús J, Campillo C, Moñino MJ, Prieto MH (2019) Using soil moisture sensors for automated irrigation scheduling in a plum crop. Water 11:2061. https://doi.org/10.3390/w11102061
Mounzer OH, Vera J, Tapia LM, García-Orellana Y, Conejero W, Abrisqueta I, Ruiz-Sánchez MC, Abrisqueta JM (2008a) Irrigation scheduling of peach trees by continuous measurement of soil water status. Agrociencia 42(8):857–868
Mounzer OH, Mendoza R, Abrisqueta I, Tapia LM, Abrisqueta JM, Vera J, Ruiz-Sánchez MC (2008b) Soil water content measured by FDR probes and thresholds for drip irrigation management in peach trees. Agric Téc México 34(3):313–322
Mounzer OH, Mendoza R, Abrisqueta I, Vera J, Ruiz-Sánchez MC, Tapia LM, Plana V, Abrisqueta JM (2008c) Estimating evapotranspiration by capacitance and neutron probes in a drip-irrigated apricot orchard. Interciencia 33(8):586–590
Mounzer OH, Conejero W, Nicolás E, Abrisqueta I, García-Orellana Y, Tapia LM, Vera J, Abrisqueta JM, Ruiz-Sánchez MC (2008d) Growth pattern and phenological stages of early maturing peach trees under a Mediterranean climate. HortSci 43(6):1813–1818. https://doi.org/10.21273/hortsci.43.6.1813
Myers BJ (1988) Water stress integral—A link between short-term stress and long-term growth. Tree Physiol 4:315–323. https://doi.org/10.1093/treephys/4.4.315
Naor A, Stern R, Flaishman M, Gal Y, Peres M (2006) Effects pf post-harvest water stress on autumnal bloom and subsequent-season productivity in mid-season ‘Spadona’ pear. J Hortic Sci Biotech 81:3651–3700. https://doi.org/10.1080/14620316.2006.11512074
Navarro-Hellín H, Torres-Sánchez R, Soto-Valles F, Albaladejo-Pérez C, López-Riquelme JA, Domingo-Miguel R (2015) A wireless sensor architecture for efficient irrigation water management. Agric Water Manag 151:64–74. https://doi.org/10.1016/j.agwat.2014.10.022
Ortuño MF, Conejero W, Moreno F, Moriana A, Intrigliolo DS, Biel C, Mellisho CD, Pérez-Pastor A, Domingo R, Ruiz-Sánchez MC, Casadesús J, Bonany J, Torrecillas A (2010) Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives. Agric Water Manag 97:1–11. https://doi.org/10.1016/j.agwat.2009.09.008
Paltineanu IC, Starr JL (1997) Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration. Soil Sci Soc Am J 61:1576–1585. https://doi.org/10.2136/sssaj1997.03615995006100060006x
Pedrero F, Maestre-Valero JF, Mounzer O, Alarcón JJ, Nicolás E (2014) Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agric Water Manag 146:228–237. https://doi.org/10.1016/j.agwat.2014.08.013
Pérez-Pastor A, Ruiz-Sánchez MC, Domingo R (2014) Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agric Water Manag 134:110–118. https://doi.org/10.1016/j.agwat.2013.12.007
Pérez-Pastor A, Ruiz-Sánchez MC, Conesa MR (2016) Drought stress effect on woody tree yield. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach, vol 2. John Wiley & Sons Ltd, UK, pp 356–374 (ISBN: 9781119054368. Chapter 22)
Playán E, Salvador R, Bonet L, Camacho E, Intrigliolo DS, Moreno MA, Rodríguez-Díaz JA, Tarjuelo JM, Madurga C, Zazo R, Sánchez-de-Ribera A, Cervantes A, Zapata N (2015) Assessing telemetry and remote control systems for water user’s associations in Spain. Agric Water Manag 202:311–324. https://doi.org/10.1016/j.agwat.2018.02.015
Qassim A, Goodwin I, Bruce R (2013) Postharvest deficit irrigation in ‘Tatura 204’ peach: subsequent productivity and water saving. Agric Water Manag 117:145–152. https://doi.org/10.1016/j.agwat.2012.11.011
Ramírez-Cuesta JM, Cruz-Blanco M, Santos C, Lorite IJ (2017) Assessing reference evapotranspiration at regional scale based on remote sensing, weather forecast and GIS tools. Int J Appl Earth Obs Geoinf 55:32–42. https://doi.org/10.1016/j.jag.2016.10.004
Ruiz-Sánchez MC, Domingo R, Pérez-Pastor A (2007) Daily variations in water relations of apricot trees under different irrigation regimes. Biol Plant 51(4):735–740. https://doi.org/10.1007/s10535-007-0150-5
Ruiz-Sánchez MC, Domingo R, Castel JR (2010) Review. Deficit irrigation in fruit trees and vines in Spain. Span J Agric Res 8(S2):5–20. https://doi.org/10.5424/sjar/201008s2-1343
Ruiz-Sánchez MC, Abrisqueta I, Conejero W, Vera J (2018) Deficit irrigation management in early-maturing peach crop. Water scarcity and sustainable agriculture in semiarid environment. Tools, strategies, and challenges for woody crops. Elsevier, pp 111–126. https://doi.org/10.1016/b978-0-12-813164-0.00006-5 (ISBN 978-0-12-813164-0. Chapter 6)
Sharples RA, Rolston DE, Biggar JW, Nightingale HI (1985) Evapotranspiration and soil water balance of young trickle-irrigated almond trees. Proc 3rd Int Drip/Trickle Irrig Congr Fresno CA 2:792–797
Thakur A, Singh Z (2013) Deficit irrigation in nectarine: fruit quality, return bloom and incidence of double fruits. Eur J Hortic Sci 78(2):67–75
EC Nº 121/2008: European Union, Commission Regulation (EC) No 1221/2008 of 5 December, 2008. Amending Regulation (EC) No 1580/2007 laying down implementing rules of Council Regulations (EC) No 2200/96, (EC) No 2201/96 and (EC) No 1182/2007 in the fruit and vegetable sector as regards marketing standards. OJ L 336:46–49
UNO (2020) United Nations Organization. Sustainable development GOALS. https://www.un.org/sustainabledeveloment/. Accessed 28 Oct 2020
Vera J, de la Peña JM (1994) FERTIGA: Programa de Fertirrigación de Frutales. CEBAS-CSIC, Murcia, Spain, p 69
Vera J, Mounzer OH, Ruiz-Sánchez MC, Abrisqueta I, Tapia LM, Abrisqueta JM (2009) Soil water balance trial involving capacitance and neutron probe measurements. Agric Water Manag 96:905–911. https://doi.org/10.1016/j.agwat.2008.11.010
Vera J, Abrisqueta I, Abrisqueta JM, Ruiz-Sánchez MC (2013) Effect of deficit irrigation on early-maturing peach tree performance. Irrig Sci 31:747–757. https://doi.org/10.1007/s00271-012-0358-9
Vera J, Abrisqueta I, Conejero W, Ruiz-Sánchez MC (2017) Precise sustainable irrigation: a review of soil-plant-atmosphere monitoring. Acta Hortic 1150:195–202. https://doi.org/10.17660/actahortic.2017.1150.28
Vera J, Conejero W, Conesa MR, Ruiz-Sánchez MC (2019) Irrigation factor approach based on soil water content: a nectarine orchard case study. Water 11:589. https://doi.org/10.3390/w11030589
Vera J, Conejero W, Mira-García AB, Conesa MR, Ruiz-Sánchez MC (2021) Towards irrigation automation based on dielectric soil sensors. J Hortic Sci Biotech. https://doi.org/10.1080/14620316.2021.1906761