Soil and plant effects on microbial community structure

Canadian Journal of Microbiology - Tập 48 Số 11 - Trang 955-964 - 2002
Jeffrey S. Buyer1, Daniel P. Roberts, Estelle Russek‐Cohen
1Sustainable Agricultural Systems Laboratory, USDA-ARS, Building 001 BARC-West, Beltsville, MD 20705-2350, USA.

Tóm tắt

We investigated the effects of two different plant species (corn and soybean) and three different soil types on microbial community structure in the rhizosphere. Our working hypothesis was that the rhizosphere effect would be strongest on fast-growing aerobic heterotrophs, while there would be little or no rhizosphere effect on oligotrophic and other slow-growing microorganisms. Culturable bacteria and fungi had larger population densities in the rhizosphere than in bulk soil. Communities were characterized by soil fatty acid analysis and by substrate utilization assays for bacteria and fungi. Fatty acid analysis revealed a very strong soil effect but little plant effect on the microbial community, indicating that the overall microbial community structure was not affected by the rhizosphere. There was a strong rhizosphere effect detected by the substrate utilization assay for fast-growing aerobic heterotrophic bacterial community structure, with soil controls and rhizosphere samples clearly distinguished from each other. There was a much weaker rhizosphere effect on fungal communities than on bacterial communities as measured by the substrate utilization assays. At this coarse level of community analysis, the rhizosphere microbial community was impacted most by soil effects, and the rhizosphere only affected a small portion of the total bacteria.Key words: rhizosphere, microbial community, fatty acid, substrate utilization.

Từ khóa


Tài liệu tham khảo

Bååth E., 1998, Appl. Environ. Microbiol., 64, 238, 10.1128/AEM.64.1.238-245.1998

Buyer J.S., 1995, Appl. Environ. Microbiol., 61, 1839, 10.1128/AEM.61.5.1839-1842.1995

Buyer J.S., 1999, Can. J. Microbiol., 45, 138, 10.1139/w98-227

Buyer J.S., 2001, J. Microbiol. Methods, 45, 53, 10.1016/S0167-7012(01)00221-4

Cavigelli M.A., 1995, Plant Soil, 170, 99, 10.1007/BF02183058

Duineveld B., 1998, Appl. Environ. Microbiol., 64, 4950, 10.1128/AEM.64.12.4950-4957.1998

Duineveld B., 2001, Appl. Environ. Microbiol., 67, 172, 10.1128/AEM.67.1.172-178.2001

Frostegård, 1993, Soil Biol. Biochem., 25, 723, 10.1016/0038-0717(93)90113-P

Garland J.L., 1991, Appl. Environ. Microbiol., 57, 2351, 10.1128/AEM.57.8.2351-2359.1991

Gelsomino A., 1999, J. Microbiol. Methods, 38, 1, 10.1016/S0167-7012(99)00054-8

Janssen P.H., 2002, Appl. Environ. Microbiol., 68, 2391, 10.1128/AEM.68.5.2391-2396.2002

Maloney P.E., 1997, Microb. Ecol., 34, 109, 10.1007/s002489900040

Marschner P., 2002, Brazil. Biol. Fertil. Soils, 35, 68, 10.1007/s00374-001-0435-3

Miller H.J., 1990, Symbiosis, 9, 337

Normander P., 2000, Appl. Environ. Microbiol., 66, 4372, 10.1128/AEM.66.10.4372-4377.2000

Norton J.M., 1991, Appl. Environ. Microbiol., 57, 1161, 10.1128/AEM.57.4.1161-1167.1991

Rondon M.R., 1999, Trends Biotechnol., 17, 403, 10.1016/S0167-7799(99)01352-9

Semenov A.M., 1991, Microb. Ecol., 22, 239, 10.1007/BF02540226

Semenov A.M., 1999, Microb. Ecol., 37, 116, 10.1007/s002489900136

Smalla K., 2001, Appl. Environ. Microbiol., 67, 4742, 10.1128/AEM.67.10.4742-4751.2001

Smit E., 1999, Appl. Environ. Microbiol., 65, 2614, 10.1128/AEM.65.6.2614-2621.1999

Watve M., 2000, Curr. Sci. (Bangalore), 78, 1535

Wieland G., 2001, Appl. Environ. Microbiol., 67, 5849, 10.1128/AEM.67.12.5849-5854.2001

Zak J.C., 1994, Soil Biol. Biochem., 26, 1101, 10.1016/0038-0717(94)90131-7

Zelles L., 1994, Soil Biol. Biochem., 26, 439, 10.1016/0038-0717(94)90175-9

Zelles L., 1995, Plant Soil, 170, 115, 10.1007/BF02183059