Soil Hydrology of Agricultural Landscapes: Quantitative Description, Research Methods, and Availability of Soil Water
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agroecological Assessment of Land and Planning of Adaptive-Landscape Systems of Agriculture and Agrotechnologies, Ed. by V. I. Kiryushin and A. L. Ivanov (Rosinformagrotekh, Moscow, 2005) [in Russian].
A. G. Bolotov, E. V. Shein, and S. V. Makarychev, “Water retention capacity of soils in the Altai region,” Eurasian Soil Sci. 52, 187–192 (2019).
Ye. M. Gusev and L. Ya. Dzhogan, “Soil mulching as an important element in the strategy of using natural water resources in agroecosystems of the steppe Crimea,” Eurasian Soil Sci. 52, 313–318 (2019).
F. R. Zaidel’man, Hydrological Regime of Soils in Nonchernozem Area: Genetic, Agronomic, and Meliorative Aspects (Gidrometeoizdat, Leningrad, 1985) [in Russian].
F. R. Zaidel’man, Melioration of Soils (KDU, Moscow, 2017) [in Russian].
F. R. Zaidel’man, L. F. Smirnova, A. P. Shvarov, and A. S. Nikiforova, Practical Manual on Lecture Course “Soil Reclamation” (Grif i K, Tula, 2008) [in Russian].
V. I. Kiryushin, The Development of the Concept of Landscape-Adaptive Farming in the Nonchernozemic Area (Kvadro, Moscow, 2020) [in Russian].
L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].
A. I. Madi and E. V. Shein, “Saturated hydraulic conductivity of soils: experimental determination and calculation using pedotransfer functions,” Agrofizika, No. 1, 37–44 (2018). https://doi.org/10.25695/AGRPH.2018.01.05
N. A. Muromtsev and K. B. Anisimov, “Specific water regime of soddy-podzolic soil on different elements of soil catena,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 77, 78–93 (2015).
N. A. Muromtsev, N. A. Semenov, and K. B. Anisimov, “Specific moisture consumption and water supply of plants from various ecological groups,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 82, 71–87 (2016).
S. S. Panina and E. V. Shein, “Mathematical models of soil moisture transfer: importance of experimental assurance and upper boundary conditions,” Moscow Univ. Soil Sci. Bull. 69, 133–138 (2014).
E. V. Shein, “Soil hydrology: stages of development, current state, and nearest prospects,” Eurasian Soil Sci. 43, 158–167 (2010).
E. V. Shein, A. G. Bolotov, A. B. Umarova, et al., Manual for Use of Digital Sensors for Field Soil Physics Observations (KDU, Moscow, 2019) [in Russian].
E. V. Shein, E. B. Skvortsova, S. S. Panina, A. B. Umarova, and K. A. Romanenko, “Hydro-depositary and hydro-transmitting properties of soddy-podzolic soils in the course of simulating the water transfer by physically grounded models,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 80, 71–82 (2015).
M. J. Lees, “Data-based mechanistic modeling and forecasting of hydrological systems,” J. Hydroinf. 2, 15–34 (2000). https://doi.org/10.2166/hydro.2000.0003
Y. Li, Q. Zhang, J. Lu, J. Yao, and Z. Tan, “Assessing surface water–groundwater interactions in a complex river-floodplain wetland-isolated lake system,” River Res. Appl. 35, 25–36 (2019). https://doi.org/10.1002/rra.3389
L. X. Liang, D. P. Lettenmaier, E. F. Wood, and S. J. Burges, “A simple hydrologically based model of land surface water and energy fluxes for GSMs,” J. Geophys. Res.: Atmos. 99 (7), 14415–14428 (1994).
H. Lin, J. Bouma, Y. Pachepsky, A. Western, J. Thompson, R. van Genuchten, H.-J. Vogel, and A. Lilly, “Hydropedology: synergistic integration of pedology and hydrology,” Water Resour. Res. 42, W05301 (2006). https://doi.org/10.1029/2005WR004085
H. S. Lin, “Hydropedology: towards new insights into interactive pedologic and hydrologic processes across scales,” J. Hydrol. 406, 141–145 (2011). https://doi.org/10.1016/j.jhydrol.2011.05.054
H. S. Lin, J. Bouma, L. Wilding, et al., “Advances in hydropedology,” Adv. Agron. 85, 1–89 (2005).
K. A. Lohse and W. E. Dietrich, “Contrasting effects of soil development on hydrological properties and flow paths,” Water Resour. Res. 41, W12419 (2005). https://doi.org/10.1029/2004WR003403
J. J. McDonnell, M. Sivapalan, K. Vaché, et al., “Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology,” Water Resour. Res. 43, W07301 (2007).
C. Rasmussen, P. A. Troch, J. Chorover, et al., “An open system framework for integrating critical zone structure and function,” Biogeochemistry 102, 15–29 (2011). https://doi.org/10.1007/s10533-010-9476-8
M. G. Schaap, F. J. Leij, and M. Th. van Genuchten, “ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions,” J. Hydrol. 251, 163–176 (2002).
E. V. Shein, A. V. Dembovetsky, and S. S. Panina, “Modeling soil water movement under low head ponding and gravity infiltration using data determined with different methods,” Procedia Environ. Sci. 19, 553–555 (2013). https://doi.org/10.1016/j.proenv.2013.06.062
M. Stefano, A. Bernasconi, B. Bauder, et al., “Chemical and biological gradients along the Damma Glacier soil chronose (Switzerland),” Vadose Zone J. 10, 867–883 (2011).
D. L. Strayer, R. E. Beighley, L. C. Thompson, et al., “Effects of land cover on stream ecosystems: roles of empirical models and scaling issues,” Ecosystems 6, 407–423 (2003). https://doi.org/10.1007/s10021-002-0170-0
G. C. Topp, J. L. Davis, and A. P. Annan, “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines,” Water Resour. Res. 16 (3), 574–582 (1980).
K. van Looy, J. Bouma, M. Herbst, et al., “Pedotransfer functions in Earth system science: challenges and perspectives,” Rev. Geophys. 55, 1199–1256 (2017). https://doi.org/10.1002/2017RG000581