SoftIGA: Soft isogeometric analysis

Quanling Deng1, Pouria Behnoudfar2, Victor M. Calo3
1School of Computing, Australian National University, Canberra, ACT, 2601, Australia
2Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington, Perth, WA, 6152, Australia
3School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, WA 6102, Australia

Tài liệu tham khảo

Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Cottrell, 2009 Nguyen, 2015, Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89, 10.1016/j.matcom.2015.05.008 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Hughes, 2014, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Eng., 272, 290, 10.1016/j.cma.2013.11.012 Calo, 2019, Dispersion optimized quadratures for isogeometric analysis, J. Comput. Appl. Math., 355, 283, 10.1016/j.cam.2019.01.025 Puzyrev, 2017, Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes, Comput. Methods Appl. Mech. Eng., 320, 421, 10.1016/j.cma.2017.03.029 Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006 Deng, 2018, Dispersion-minimized mass for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 341, 71, 10.1016/j.cma.2018.06.016 Deng, 2018, Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 328, 554, 10.1016/j.cma.2017.09.025 Bartoň, 2018, Generalization of the Pythagorean eigenvalue error theorem and its application to isogeometric analysis, 147 Calo, 2017, Quadrature blending for isogeometric analysis, Procedia Comput. Sci., 108, 798, 10.1016/j.procs.2017.05.143 Puzyrev, 2018, Spectral approximation properties of isogeometric analysis with variable continuity, Comput. Methods Appl. Mech. Engrg., 334, 22, 10.1016/j.cma.2018.01.042 Deng, 2019, Optimal spectral approximation of 2n-order differential operators by mixed isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 343, 297, 10.1016/j.cma.2018.08.042 Deng, 2018, Isogeometric spectral approximation for elliptic differential operators, J. Comput. Sci. Hiemstra, 2021, Removal of spurious outlier frequencies and modes from isogeometric discretizations of second-and fourth-order problems in one, two, and three dimensions, Comput. Methods Appl. Mech. Eng., 387, 10.1016/j.cma.2021.114115 Manni, 2022, Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations, Comput. Methods Appl. Mech. Engrg., 389, 10.1016/j.cma.2021.114260 Bazilevs, 2007, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Engrg., 199, 4853, 10.1016/j.cma.2007.06.026 Bazilevs, 2008, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199 Deng, 2021, A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes, Comput. Methods Appl. Mech. Engrg., 383, 10.1016/j.cma.2021.113907 Deng, 2021, Outlier removal for isogeometric spectral approximation with the optimally-blended quadratures, 315 Deng, 2021, SoftFEM: revisiting the spectral finite element approximation of second-order elliptic operators, Comput. Math. Appl., 101, 119, 10.1016/j.camwa.2021.09.011 Brezis, 2011, Functional analysis, Sobolev spaces and partial differential equations de Boor, 2001, vol. 27 Piegl, 1997 Floater, 2019, Optimal spline spaces for L2 n-width problems with boundary conditions, Constr. Approx., 50, 1, 10.1007/s00365-018-9427-5 Sande, 2019, Sharp error estimates for spline approximation: Explicit constants, N-widths, and eigenfunction convergence, Math. Models Methods Appl. Sci., 29, 1175, 10.1142/S0218202519500192 Strang, 2014, Functions of difference matrices are Toeplitz plus Hankel, SIAM Rev., 56, 525, 10.1137/120897572 Deng, 2021, Analytical solutions to some generalized and polynomial eigenvalue problems, Special Matrices, 9, 240, 10.1515/spma-2020-0135 Sande, 2022, Ritz-type projectors with boundary interpolation properties and explicit spline error estimates, Numer. Math., 151, 475, 10.1007/s00211-022-01286-z Goetgheluck, 1990, On the markov inequality in Lp-spaces, J. Approx. Theory, 62, 197, 10.1016/0021-9045(90)90032-L S. Ozisik, B. Riviere, T. Warburton, On the Constants in Inverse Inequalities in L2, Tech. rep., 2010. Strang, 1973 Idesman, 2018, The use of the local truncation error to improve arbitrary-order finite elements for the linear wave and heat equations, Comput. Methods Appl. Mech. Engrg., 334, 268, 10.1016/j.cma.2018.02.001 Idesman, 2020, New 25-point stencils with optimal accuracy for 2-D heat transfer problems, comparison with the quadratic isogeometric elements, J. Comput. Phys., 418, 10.1016/j.jcp.2020.109640 Weisstein, 2002 Ern, 2021, Finite elements. I. approximation and interpolation, 10.1007/978-3-030-56923-5_50 Ciarlet, 2002 Bloch, 1928, Quantum mechanics of electrons in crystal lattices, Z. Phys., 52, 555, 10.1007/BF01339455 Kittel, 2018 Ainsworth, 2010, Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, SIAM J. Numer. Anal., 48, 346, 10.1137/090754017 Horn, 2012 Ainsworth, 2004, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42, 553, 10.1137/S0036142903423460