SoftIGA: Soft isogeometric analysis
Tài liệu tham khảo
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Cottrell, 2009
Nguyen, 2015, Isogeometric analysis: an overview and computer implementation aspects, Math. Comput. Simulation, 117, 89, 10.1016/j.matcom.2015.05.008
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Hughes, 2014, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Eng., 272, 290, 10.1016/j.cma.2013.11.012
Calo, 2019, Dispersion optimized quadratures for isogeometric analysis, J. Comput. Appl. Math., 355, 283, 10.1016/j.cam.2019.01.025
Puzyrev, 2017, Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes, Comput. Methods Appl. Mech. Eng., 320, 421, 10.1016/j.cma.2017.03.029
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Deng, 2018, Dispersion-minimized mass for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 341, 71, 10.1016/j.cma.2018.06.016
Deng, 2018, Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 328, 554, 10.1016/j.cma.2017.09.025
Bartoň, 2018, Generalization of the Pythagorean eigenvalue error theorem and its application to isogeometric analysis, 147
Calo, 2017, Quadrature blending for isogeometric analysis, Procedia Comput. Sci., 108, 798, 10.1016/j.procs.2017.05.143
Puzyrev, 2018, Spectral approximation properties of isogeometric analysis with variable continuity, Comput. Methods Appl. Mech. Engrg., 334, 22, 10.1016/j.cma.2018.01.042
Deng, 2019, Optimal spectral approximation of 2n-order differential operators by mixed isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 343, 297, 10.1016/j.cma.2018.08.042
Deng, 2018, Isogeometric spectral approximation for elliptic differential operators, J. Comput. Sci.
Hiemstra, 2021, Removal of spurious outlier frequencies and modes from isogeometric discretizations of second-and fourth-order problems in one, two, and three dimensions, Comput. Methods Appl. Mech. Eng., 387, 10.1016/j.cma.2021.114115
Manni, 2022, Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations, Comput. Methods Appl. Mech. Engrg., 389, 10.1016/j.cma.2021.114260
Bazilevs, 2007, Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. Methods Appl. Mech. Engrg., 199, 4853, 10.1016/j.cma.2007.06.026
Bazilevs, 2008, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199
Deng, 2021, A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes, Comput. Methods Appl. Mech. Engrg., 383, 10.1016/j.cma.2021.113907
Deng, 2021, Outlier removal for isogeometric spectral approximation with the optimally-blended quadratures, 315
Deng, 2021, SoftFEM: revisiting the spectral finite element approximation of second-order elliptic operators, Comput. Math. Appl., 101, 119, 10.1016/j.camwa.2021.09.011
Brezis, 2011, Functional analysis, Sobolev spaces and partial differential equations
de Boor, 2001, vol. 27
Piegl, 1997
Floater, 2019, Optimal spline spaces for L2 n-width problems with boundary conditions, Constr. Approx., 50, 1, 10.1007/s00365-018-9427-5
Sande, 2019, Sharp error estimates for spline approximation: Explicit constants, N-widths, and eigenfunction convergence, Math. Models Methods Appl. Sci., 29, 1175, 10.1142/S0218202519500192
Strang, 2014, Functions of difference matrices are Toeplitz plus Hankel, SIAM Rev., 56, 525, 10.1137/120897572
Deng, 2021, Analytical solutions to some generalized and polynomial eigenvalue problems, Special Matrices, 9, 240, 10.1515/spma-2020-0135
Sande, 2022, Ritz-type projectors with boundary interpolation properties and explicit spline error estimates, Numer. Math., 151, 475, 10.1007/s00211-022-01286-z
Goetgheluck, 1990, On the markov inequality in Lp-spaces, J. Approx. Theory, 62, 197, 10.1016/0021-9045(90)90032-L
S. Ozisik, B. Riviere, T. Warburton, On the Constants in Inverse Inequalities in L2, Tech. rep., 2010.
Strang, 1973
Idesman, 2018, The use of the local truncation error to improve arbitrary-order finite elements for the linear wave and heat equations, Comput. Methods Appl. Mech. Engrg., 334, 268, 10.1016/j.cma.2018.02.001
Idesman, 2020, New 25-point stencils with optimal accuracy for 2-D heat transfer problems, comparison with the quadratic isogeometric elements, J. Comput. Phys., 418, 10.1016/j.jcp.2020.109640
Weisstein, 2002
Ern, 2021, Finite elements. I. approximation and interpolation, 10.1007/978-3-030-56923-5_50
Ciarlet, 2002
Bloch, 1928, Quantum mechanics of electrons in crystal lattices, Z. Phys., 52, 555, 10.1007/BF01339455
Kittel, 2018
Ainsworth, 2010, Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, SIAM J. Numer. Anal., 48, 346, 10.1137/090754017
Horn, 2012
Ainsworth, 2004, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal., 42, 553, 10.1137/S0036142903423460