Soft actuators in surgical robotics: a state-of-the-art review

Hugo Rodrigue1,2, Jongwoo Kim3
1School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
2Department of Intelligent Robotics, Sungkyunkwan University, Suwon, Republic of Korea
3Biomedical and Intelligent Robotics Laboratory, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Republic of Korea

Tóm tắt

Soft surgical robots represent a groundbreaking innovation in the field of medical technology. These robots utilize soft, deformable materials to navigate and interact with delicate structures inside the human body, such as organs and blood vessels, with enhanced safety. They have the potential to transform healthcare by expanding the capabilities of minimally invasive surgeries, targeted drug delivery, and precise diagnostics. They can also reduce patient discomfort, recovery times, and the risk of complications, infections, and accidental injuries. The key to the functionality of soft surgical robots lies in their actuation mechanisms. Various actuation methods have been developed, including pneumatic, magnetic, tendon-driven, smart materials (like shape memory alloys, dielectric elastomer actuators, and ionic polymer–metal composites), and hybrid combinations of these mechanisms. Each actuator type offers unique advantages and challenges, making the selection of the right actuation solution a complex task. This review paper aims to provide a comprehensive understanding of these soft actuation mechanisms and their applications in surgical robotics. It delves into the current state of the art in various applications, from endoscopes and catheters to cardiac support devices, bioinspired inchworm robots, and more. While significant progress has been made in the field of soft actuators for surgical robotics, this paper identifies several challenges that must still be overcome to effectively apply these innovations in real-life surgical procedures on human patients.

Từ khóa


Tài liệu tham khảo

Jamil B, Oh N, Lee J-G, Lee H, Rodrigue H (2023) A review and comparison of linear pneumatic artificial muscles. Int J Precis Eng Manufact-Green Technol. https://doi.org/10.1007/s40684-023-00531-6 Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, Dasgupta P, Menciassi A (2014) Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Rob 1:122–131. https://doi.org/10.1089/soro.2014.0001 Abidi H, Gerboni G, Brancadoro M, Fras J, Diodato A, Cianchetti M, Wurdemann H, Althoefer K, Menciassi A (2018) Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int J Med Robot Comp Assist Surg 14:e1875. https://doi.org/10.1002/rcs.1875 De Falco I, Cianchetti M, Menciassi A (2017) A soft multi-module manipulator with variable stiffness for minimally invasive surgery. Bioinspir Biomim 12:056008. https://doi.org/10.1088/1748-3190/aa7ccd Chauhan M, Chandler JH, Jha A, Subramaniam V, Obstein KL, Valdastri P (2021) An origami-based soft robotic actuator for upper gastrointestinal endoscopic applications. Front Robot AI 8:664720. https://doi.org/10.3389/frobt.2021.664720 McCandless M, Perry A, DiFilippo N, Carroll A, Billatos E, Russo S (2022) A soft robot for peripheral lung cancer diagnosis and therapy. Soft Rob 9:754–766. https://doi.org/10.1089/soro.2020.0127 Zhang Y, Liao J, Chen M, Li X, Jin G (2023) A multi-module soft robotic arm with soft actuator for minimally invasive surgery. Int J Med Robot Comp Assist Surg 19:e2467. https://doi.org/10.1002/rcs.2467 Decroly G, Lambert P, Delchambre A (2021) A soft pneumatic two-degree-of-freedom actuator for endoscopy. Front Robot AI 8:768236. https://doi.org/10.3389/frobt.2021.768236 Mathur N, Mak YX, Naghibi H, Abayazid M (2021) A novel asymmetric pneumatic soft-surgical endoscope design with laminar jamming. In: Annual international conference of the IEEE engineering in medicine and biology society, pp 4636–4640. https://doi.org/10.1109/EMBC46164.2021.9629888 Gopesh T, Wen JH, Santiago-Dieppa D, Yan B, Pannell JS, Khalessi A, Norbash A, Friend J (2021) Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. Soft Robot 6:eabf0601. https://doi.org/10.1101/2021.06.28.21258767 Russo S, Ranzani T, Gafford J, Walsh CJ, Wood RJ (2016) Soft pop-up mechanisms for micro surgical tools: design and characterization of compliant millimeter-scale articulated structures. In: IEEE international conference on robotics and automation, pp 750–757. https://doi.org/10.1109/ICRA.2016.7487203 Russo S, Ranzani T, Walsh CJ, Wood RJ (2017) An additive millimeter-scale fabrication method for soft biocompatible actuators and sensors. Adv Mater Technol 2:1700135. https://doi.org/10.1002/admt.201700135 Levering V, Wang Q, Shivapooja P, Zhao X, Lopez GP (2014) Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv Healthcare Mater 3:1588–1596. https://doi.org/10.1002/adhm.201400035 Dolan EB et al (2019) An actuatable soft reservoir modulates host foreign body response. Sci Robot 4:aax7043. https://doi.org/10.1126/scirobotics.aax7043 Thai MT et al (2023) Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci 10:e2205656. https://doi.org/10.1002/advs.202205656 Perez-Guagnelli E, Jones J, Tokel AH, Herzig N, Jones B, Miyashita S, Damian DD (2020) Characterization, simulation and control of a soft helical pneumatic implantable robot for tissue regeneration. IEEE Trans Med Robot Bionics 2:94–103. https://doi.org/10.1109/tmrb.2020.2970308 Amadeo T, Van Lewen D, Janke T, Ranzani T, Devaiah A, Upadhyay U, Russo S (2021) Soft robotic deployable origami actuators for neurosurgical brain retraction. Front Robot AI 8:731010. https://doi.org/10.3389/frobt.2021.731010 Roche ET et al (2017) Soft robotic sleeve supports heart function. Sci Transl Med 9:eaaf3925. https://doi.org/10.1126/scitranslmed.aaf3925 Horvath MA et al (2017) An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann Biomed Eng 45:2222–2233. https://doi.org/10.1007/s10439-017-1855-z Payne CJ et al (2017) Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci Robot 2:aan6736. https://doi.org/10.1126/scirobotics.aan6736 Saeed MY et al (2020) Dynamic augmentation of left ventricle and mitral valve function with an implantable soft robotic device. JACC Basic Transl Sci 5:229–242. https://doi.org/10.1016/j.jacbts.2019.12.001 Hu L, Bonnemain J, Saeed MY, Singh M, Quevedo Moreno D, Vasilyev NV, Roche ET (2023) An implantable soft robotic ventilator augments inspiration in a pig model of respiratory insufficiency. Nat Biomed Eng 7:110–123. https://doi.org/10.1038/s41551-022-00971-6 Payne CJ et al (2017) An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Rob 4:241–250. https://doi.org/10.1089/soro.2016.0076 Manfredi L, Capoccia E, Ciuti G, Cuschieri A (2019) A soft pneumatic inchworm double balloon (SPID) for colonoscopy. Sci Rep 9:11109. https://doi.org/10.1038/s41598-019-47320-3 Chen J, Yang J, Qian F, Lu Q, Guo Y, Sun Z, Chen C (2022) A novel inchworm-inspired soft robotic colonoscope based on a rubber bellows. Micromachines 13:635. https://doi.org/10.3390/mi13040635 Pan TL, Lei MC, Ng WY, Li Z (2022) Analytical modeling of the interaction between soft balloon-like actuators and soft tubular environment for gastrointestinal inspection. Soft Rob 9:386–398. https://doi.org/10.1089/soro.2020.0159 Li G, Qiu W, Wen H, Wang M, Liu F (2022) Development of an earthworm-based intestinal soft robot equipped with a gripper. Machines 10:1057. https://doi.org/10.3390/machines10111057 Kim H, Kim J, You JM, Lee SW, Kyung K-U, Kwon D-S (2021) A Sigmoid-colon-straightening soft actuator with peristaltic motion for colonoscopy insertion assistance: Easycolon. IEEE Robot Autom Lett 6:3577–3584. https://doi.org/10.1109/lra.2021.3060391 Li Y, Peine J, Mencattelli M, Wang J, Ha J, Dupont PE (2022) A soft robotic balloon endoscope for airway procedures. Soft Rob 9:1014–1029. https://doi.org/10.1089/soro.2020.0161 Lindenroth L, Bano S, Stilli A, Manjaly JG, Stoyanov D (2021) A fluidic soft robot for needle guidance and motion compensation in intratympanic steroid injections. IEEE Robot Automat Lett 6:871–878. https://doi.org/10.1109/lra.2021.3051568 Van Lewen D, Janke T, Austin R, Lee H, Billatos E, Russo S (2023) A millimeter-scale soft robot for tissue biopsy procedures. Adv Intell Syst 5:2200326. https://doi.org/10.1002/aisy.202200326 Guo J, Low J-H, Liang X, Lee JS, Wong Y-R, Yeow RCH (2019) A hybrid soft robotic surgical gripper system for delicate nerve manipulation in digital nerve repair surgery. IEEE/ASME Trans Mechatron 24:1440–1451. https://doi.org/10.1109/tmech.2019.2924518 Guo J, Low JH, Rajagopal Iyer V, Wong P, Ong CB, Loh WL, Yeow CH (2022) A preliminary study on grip-induced nerve damage caused by a soft pneumatic elastomeric gripper. Polymers 14:4272. https://doi.org/10.3390/polym14204272 Consumi V, Lindenroth L, Merlin J, Stoyanov D, Stilli A (2023) Design and evaluation of the SoftSCREEN capsule for colonoscopy. IEEE Robot Automat Lett 8:1659–1666. https://doi.org/10.1109/LRA.2023.3241811 Dehghani H, Welch CR, Pourghodrat A, Nelson CA, Oleynikov D, Dasgupta P, Terry BS (2017) Design and preliminary evaluation of a self-steering, pneumatically driven colonoscopy robot. J Med Eng Technol 41:223–236. https://doi.org/10.1080/03091902.2016.1275853 Hwee J, Lewis A, Bly RA, Moe KS, Hannaford B (2021) An everting emergency airway device. In: International symposium on medical robotics, pp 1–7. https://doi.org/10.1109/ismr48346.2021.9661552 Le VN, Nguyen NH, Alameh K, Weerasooriya R, Pratten P (2016) Accurate modeling and positioning of a magnetically controlled catheter tip. Med Phys 43:650–663. https://doi.org/10.1118/1.4939228 Hoshiar AK, Jeon S, Kim K, Lee S, Kim J-y, Choi H (2018) Steering algorithm for a flexible microrobot to enhance guidewire control in a coronary angioplasty application. Micromachines 9:617. https://doi.org/10.3390/9120617 Jeon S et al (2019) A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Rob 6:54–68. https://doi.org/10.1089/soro.2018.0019 Martin JW, Scaglioni B, Norton JC, Subramanian V, Arezzo A, Obstein KL, Valdastri P (2020) Enabling the future of colonoscopy with intelligent and autonomous magnetic manipulation. Nat Mach Intell 2:595–606. https://doi.org/10.1038/s42256-020-00231-9 Chautems C, Lyttle S, Boehler Q, Nelson BJ (2018) Design and evaluation of a steerable magnetic sheath for cardiac ablations. IEEE Robot Automat Lett 3:2123–2128. https://doi.org/10.1109/lra.2018.2809546 Kim Y, Parada GA, Liu S, Zhao X (2019) Ferromagnetic soft continuum robots. Sci Robot 4:aax7329. https://doi.org/10.1126/scirobotics.aax7329 Yang X, Shang W, Lu H, Liu Y, Yang L, Tan R, Wu X, Shen Y (2020) An agglutinate magnetic spray transforms inanimate objects into millirobots for biomedical applications. Sci Robot 5:eabc8191. https://doi.org/10.1126/scirobotics.abc819 Mair LO, Liu X, Dandamudi B, Jain K, Chowdhury S, Weed J, Diaz-Mercado Y, Weinberg IN, Krieger A (2020) MagnetoSuture: tetherless manipulation of suture needles. IEEE Trans Med Robot Bionics 2:206–215. https://doi.org/10.1109/tmrb.2020.2988462 Li Y, Guo C, Xin W, Pan T, Li W, Chiu PWY, Li Z (2021) Design and preliminary evaluation of an electromagnetically actuated soft-tethered colonoscope. IEEE Trans Med Robot Bionics 3:402–413. https://doi.org/10.1109/tmrb.2021.3063844 Zhou C et al (2021) Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nat Commun 12:5072. https://doi.org/10.1038/s41467-021-25386-w Kim Y et al (2022) Telerobotic neurovascular interventions with magnetic manipulation. Sci Robot 7:abg9907. https://doi.org/10.1126/scirobotics.abg9907 Tiryaki ME, Elmacıoğlu YG, Sitti M (2023) Magnetic guidewire steering at ultrahigh magnetic fields. Sci Adv 9:eadg643. https://doi.org/10.1126/sciadv.adg6438 Yim S, Sitti M (2012) Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans Rob 28:183–194. https://doi.org/10.1109/tro.2011.2163861 Yim S, Goyal K, Sitti M (2013) Magnetically actuated soft capsule with the multimodal drug release function. IEEE/ASME Trans Mechatron 18:1413–1418. https://doi.org/10.1109/TMECH.2012.2235077 Yim S, Gultepe E, Gracias DH, Sitti M (2014) Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng 61:513–521. https://doi.org/10.1109/TBME.2013.2283369 Son D, Gilbert H, Sitti M (2020) Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Rob 7:10–21. https://doi.org/10.1089/soro.2018.0171 Carpi F, Pappone C (2009) Magnetic maneuvering of endoscopic capsules by means of a robotic navigation system. IEEE Trans Biomed Eng 56:1482–1490. https://doi.org/10.1109/TBME.2009.2013336 Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ (2015) Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater 27:2981–2988. https://doi.org/10.1002/adma.201404444 Park J, Jin C, Lee S, Kim JY, Choi H (2019) Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv Healthcare Mater 8:e1900213. https://doi.org/10.1002/adhm.201900213 Lee S, Lee S, Kim S, Yoon CH, Park HJ, Kim JY, Choi H (2018) Fabrication and characterization of a magnetic drilling actuator for navigation in a three-dimensional phantom vascular network. Sci Rep 8:3691. https://doi.org/10.1038/s41598-018-22110-5 Kratochvil BE, Kummer MP, Abbott JJ, Borer R, Ergeneman O, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. In: IEEE international conference on robotics and automation, pp 1080–1081. https://doi.org/10.1109/TRO.2010.2073030 Miyashita S, Guitron S, Yoshida K, Li S, Damian DD, Rus D (2016) Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: IEEE international conference on robotics and automation, pp 909–916. https://doi.org/10.1109/ICRA.2016.7487222 Hu W, Lum GZ, Mastrangeli M, Sitti M (2018) Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85. https://doi.org/10.1038/nature25443 Pozhitkova AV, Kladko DV, Vinnik DA, Taskaev SV, Vinogradov VV (2022) Reprogrammable soft swimmers for minimally invasive thrombus extraction. ACS Appl Mater Interfaces 14:23896–23908. https://doi.org/10.1021/acsami.2c04745 Gu H, Bertrand T, Boehler Q, Chautems C, Vasilyev NV, Nelson BJ (2020) Magnetically active cardiac patches as an untethered, non-blood contacting ventricular assist device. Adv Sci 8:2000726. https://doi.org/10.1002/advs.202000726 Dario P, Carrozza MC, Marcacci M, D’Attanasio S, Magnami B, Tonet O, Megali G (2000) A novel mechatronic tool for computer-assisted arthroscopy. IEEE Trans Inf Technol Biomed 4:15–29. https://doi.org/10.1109/4233.826855 Kutzer MDM, Segreti SM, Brown CY, Taylor RH, Mears SC, Armand M (2011) Design of a new cable-driven manipulator with a large open lumen: preliminary applications in the minimally-invasive removal of osteolysis. In: IEEE international conference on robotics and automation, pp 2913–2920. https://doi.org/10.1109/ICRA.2011.5980285 Camarillo DB, Milne CF, Carlson CR, Zinn MR, Salisbury JK (2008) mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Rob 24:1262–1273. https://doi.org/10.1109/tro.2008.2002311 Yoon H-S, Yi B-J (2009) A 4-DOF flexible continuum robot using a spring backbone. In: IEEE international conference on mechatronics and automation, pp 1249–1254. https://doi.org/10.1109/ICMA.2009.5246612 Reed KB, Majewicz A, Kallem V, Alterovitz R, Goldberg K, Cowan NJ, Okamura AM (2011) Robot-assisted needle steering. IEEE Robot Autom Mag 18:35–46. https://doi.org/10.1109/MRA.2011.942997 Do TN, Tjahjowidodo T, Lau MWS, Phee SJ (2014) Dynamic friction-based force feedback for tendon-sheath mechanism in NOTES system. Int J Comp Elect Eng 6:252–258. https://doi.org/10.7763/ijcee.2014.V6.833 Do TN, Tjahjowidodo T, Lau MWS, Phee SJ (2014) An investigation of friction-based tendon sheath model appropriate for control purposes. Mech Syst Signal Process 42:97–114. https://doi.org/10.1016/j.ymssp.2013.08.014 Kassim I, Phee L, Ng WS, Gong F, Dario P, Mosse CA (2006) Locomotion techniques for robotic colonoscopy. IEEE Eng Med Biol Mag 25:49–56. https://doi.org/10.1109/MEMB.2006.1636351 Cheng SS, Wang X, Desai JP (2017) Design and analysis of a remotely-actuated cable-driven neurosurgical robot. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1685–1690. https://doi.org/10.1109/IROS.2017.8205980 Runciman M, Avery J, Zhao M, Darzi A, Mylonas GP (2020) Deployable, variable stiffness, cable driven robot for minimally invasive surgery. Front Robot AI 6:141. https://doi.org/10.3389/frobt.2019.00141 Xiao X, Gao H, Li C, Qiu L, Kumar KS, Cai CJ, Bhola BS, King NKK, Ren H (2020) Portable body-attached positioning mechanism toward robotic needle intervention. IEEE/ASME Trans Mechatron 25:1105–1116. https://doi.org/10.1109/tmech.2020.2974760 Kim Y-J, Cheng S, Kim S, Iagnemma K (2014) A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Trans Rob 30:382–395. https://doi.org/10.1109/tro.2013.2287975 Zhang D, Sun Y, Lueth TC (2021) Design of a novel tendon-driven manipulator structure based on monolithic compliant rolling-contact joint for minimally invasive surgery. Int J Comput Assist Radiol Surg 16:1615–1625. https://doi.org/10.1007/s11548-021-02442-w Choset H, Zenati M, Ota T, Degani A, Schwartzman D, Zubiate B, Wright C (2011) Enabling medical robotics for the next generation of minimally invasive procedures: minimally invasive cardiac surgery with single port access. In: Surgical Robotics: Systems Applications and Visions. Springer, Boston, MA, pp 257–270. https://doi.org/10.1007/978-1-4419-1126-1_12 Rateni G, Cianchetti M, Ciuti G, Menciassi A, Laschi C (2015) Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: a proof of concept. Meccanica 50:2855–2863. https://doi.org/10.1007/s11012-015-0261-6 Bernth JE, Arezzo A, Liu H (2017) A novel robotic meshworm with segment-bending anchoring for colonoscopy. IEEE Robot Automat Lett 2:1718–1724. https://doi.org/10.1109/lra.2017.2678540 Kato T, Okumura I, Kose H, Takagi K, Hata N (2014) Extended kinematic mapping of tendon-driven continuum robot for neuroendoscopy. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1997–2002. https://doi.org/10.1109/IROS.2014.6942828 Kaneko M, Paetsch W, Tolle H (1992) Input-dependent stability of joint torque control of tendon-driven robot hands. IEEE Trans Industr Electron 39:96–104. https://doi.org/10.1109/41.166730 Gao H, Hao R, Yang X, Li C, Zhang Z, Zuo X, Li Y, Ren H (2023) Modeling and compensation of stiffness-dependent hysteresis for stiffness-tunable tendon-sheath mechanism in flexible endoscopic robots. IEEE Trans Ind Electronics, pp 1–11. https://doi.org/10.1109/tie.2023.3314891 Zhang Z, Zhang G, Wang S, Shi C (2023) Hysteresis modeling and compensation for tendon-sheath mechanisms in robot-assisted endoscopic surgery based on the modified Bouc-Wen model with decoupled model parameters. IEEE Trans Med Robot Bionics 5:218–229. https://doi.org/10.1109/tmrb.2023.3249234 Wu Q, Wang X, Chen L, Du F (2015) Transmission model and compensation control of double-tendon-sheath actuation system. IEEE Trans Industr Electron 62:1599–1609. https://doi.org/10.1109/tie.2014.2360062 Kim D, Kim H, Jin S (2022) Recurrent neural network with preisach model for configuration-specific hysteresis modeling of tendon-sheath mechanism. IEEE Robot Automat Lett 7:2763–2770. https://doi.org/10.1109/lra.2022.3144769 Li X, Cao L, Tiong AMH, Phan PT, Phee SJ (2019) Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning. Mech Mach Theory 134:323–337. https://doi.org/10.1016/j.mechmachtheory.2018.12.035 Li X, Tiong AMH, Cao L, Lai W, Phan PT, Phee SJ (2019) Deep learning for haptic feedback of flexible endoscopic robot without prior knowledge on sheath configuration. Int J Mech Sci 163:105129. https://doi.org/10.1016/j.ijmecsci.2019.105129 Kim J, Kwon S-i, Moon Y, Kim K (2022) Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator. IEEE/ASME Trans Mechatron 27:501–512. https://doi.org/10.1109/tmech.2021.3067335 Ahn J, Hwang M, Kong D, Kim J, Kwon D-S (2023) Asymmetric rolling contact joint for enhanced payload capabilities. IEEE/ASME Trans Mechatronics, pp 1–12. https://doi.org/10.1109/tmech.2023.3279648 Dupont PE, Lock J, Itkowitz B, Butler E (2010) Design and control of concentric-tube robots. IEEE Trans Rob 26:209–225. https://doi.org/10.1109/TRO.2009.2035740 Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29:1661–1683. https://doi.org/10.1177/0278364910368147 Lee D-Y, Kim J, Kim J-S, Baek C, Noh G, Kim D-N, Kim K, Kang S, Cho K-J (2015) Anisotropic patterning to reduce instability of concentric-tube robots. IEEE Trans Rob 31:1311–1323. https://doi.org/10.1109/tro.2015.2481283 Kim J, Choi W-Y, Kang S, Kim C, Cho K-J (2019) Continuously variable stiffness mechanism using nonuniform patterns on coaxial tubes for continuum microsurgical robot. IEEE Trans Rob 35:1475–1487. https://doi.org/10.1109/tro.2019.2931480 Luo KAXJ, Kim J, Looi T, Drake J (2021) Design optimization for the stability of concentric tube robots. IEEE Robot Automat Lett 6:8309–8316. https://doi.org/10.1109/LRA.2021.3102306 Park S, Kim J, Kim C, Cho K-J, Noh G (2022) Design optimization of asymmetric patterns for variable stiffness of continuum tubular robots. IEEE Trans Industr Electron 69:8190–8200. https://doi.org/10.1109/tie.2021.3104604 Park S, Kim J, Park J, Burgner-Kahrs J, Noh G (2023) Design of patterns in tubular robots using DNN-metaheuristics optimization. Int J Mech Sci 251:108352. https://doi.org/10.1016/j.ijmecsci.2023.108352 Mitros Z, Sadati S, Seneci C, Bloch E, Leibrandt K, Khadem M, da Cruz L, Bergeles C (2020) Optic nerve sheath fenestration with a multi-arm continuum robot. IEEE Robot Automat Lett 5:4874–4881. https://doi.org/10.1109/LRA.2020.3005129 Vandebroek T, Ourak M, Gruijthuijsen C, Javaux A, Legrand J, Vercauteren T, Ourselin S, Deprest T, Poorten EV (2019) Macro-micro multi-arm robot for single-port access surgery. In: IEEE/RSJ international conference on intelligent robots and systems, pp 425–432. https://doi.org/10.1109/IROS40897.2019.8968219 Gosline AH, Vasilyev NV, Veeramani A, Wu M, Schmitz G, Chen R, Arabagi V, Nido PJd, Dupont PE (2012) Metal MEMS tools for beating-heart tissue removal. In: IEEE international conference on robotics and automation, pp 1921–1926. https://doi.org/10.1109/ICRA.2012.6225210 Gosline AH, Vasilyev NV, Butler EJ, Folk C, Cohen A, Chen R, Lang N, del Nido PJ, Dupont PE (2012) Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools. Int J Robot Res 31:1081–1093. https://doi.org/10.1177/0278364912443718 Vasilyev NV et al (2013) Percutaneous steerable robotic tool delivery platform and metal microelectromechanical systems device for tissue manipulation and approximation: closure of patent foramen ovale in an animal model. Circulation Cardiovasc Intervent 6:468–475. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000324 Swaney PJ, Mahoney AW, Remirez AA, Lamers E, Hartley BI, Feins RH, Alterovitz R, III RJW (2015) Tendons, concentric tubes, and a bevel tip: three steerable robots in one transoral lung access system. In: IEEE international conference on robotics and automation, pp 5378–5383. https://doi.org/10.1109/ICRA.2015.7139950 Hendrick RJ, Mitchell CR, Herrell SD, Webster RJ 3rd (2015) Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int J Robot Res 34:1559–1572. https://doi.org/10.1177/0278364915585397 Budde L, Hon NWL, Kim J, Witterick I, Campisi P, Chan Y, Forte V, Drake J, Looi T (2021) Development of a steerable miniature instrument to manage internal carotid artery injury in endoscopic transsphenoidal surgery simulation. IEEE Trans Med Robot Bionics 3:281–284. https://doi.org/10.1109/tmrb.2020.3041897 Kim J, Kim Y, Cho K-J, Kim K (2020) Development and preclinical trials of a novel steerable cannula for 360° arthroscopic capsular release in minimally invasive surgery. In: 42nd annual international conference of the IEEE engineering in medicine & biology society, pp 4890–4894. https://doi.org/10.1109/EMBC44109.2020.9175681 Kim J, Looi T, Newman A, Drake J (2020) Development of deployable bending wrist for minimally invasive laparoscopic endoscope. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3048–3054. https://doi.org/10.1109/iros45743.2020.9341746 Kim J, Newman A, Looi T (2020) Endoscope with deployable tooltip camera and methods of use thereof. Endopodium , Inc., United States. Yang GZet al (2017) Medical robotics-Regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2:aam8638. https://doi.org/10.1126/scirobotics.aam8638 Fagogenis G, et al (2019) Autonomous robotic intracardiac catheter navigation using haptic vision. Sci Robot 4:eaaw1977. https://doi.org/10.1126/scirobotics.aaw1977 Kuntz A, et al (2023) Autonomous medical needle steering in vivo. Sci Robot 8:eadf7614. https://doi.org/10.1126/scirobotics.adf761 Ikuta K, Tsukamoto M, Hirose S (1988) Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: IEEE international conference on robotics and automation, pp 427–430. https://doi.org/10.1109/ROBOT.1988.12085 Kim MS, Heo JK, Rodrigue H, Lee HT, Pane S, Han MW, Ahn SH (2023) Shape memory alloy (SMA) actuators: the role of material, form, and scaling effects. Adv Mater 35:e2208517. https://doi.org/10.1002/adma.202208517 Rodrigue H, Wang W, Han M-W, Kim TJY, Ahn S-H (2017) An overview of shape memory alloy-coupled actuators and robots. Soft Rob 4:3–15. https://doi.org/10.1089/soro.2016.0008 Chung YS, Lee JH, Jang JH, Choi HR, Rodrigue H (2019) Jumping tensegrity robot based on torsionally prestrained SMA springs. ACS Appl Mater Interfaces 11:40793–40799. https://doi.org/10.1021/acsami.9b13062 Haga Y, Esashi M (2000) Small diameter active catheter using shape memory alloy coils. IEEJ Trans Sensors Micromach 120:509–514. https://doi.org/10.1109/MEMSYS.1998.659793 Crews JH, Buckner GD (2012) Design optimization of a shape memory alloy-actuated robotic catheter. J Intell Mater Syst Struct 23:545–562. https://doi.org/10.1177/1045389x12436738 Abdul Kadir MR, Dewi DEO, Jamaludin MN, Nafea M, Mohamed Ali MS (2019) A multi-segmented shape memory alloy-based actuator system for endoscopic applications. Sens Actuators A 296:92–100. https://doi.org/10.1016/j.sna.2019.06.056 Hong W, Feng F, Xie L, Yang G-Z (2022) A two-segment continuum robot with piecewise stiffness for maxillary sinus surgery and its decoupling method. IEEE/ASME Trans Mechatron 27:4440–4450. https://doi.org/10.1109/tmech.2022.3157041 Alcaide JO, Pearson L, Rentschler ME (2017) Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin. In: IEEE international conference on robotics and automation, pp 4338–4345. https://doi.org/10.1109/ICRA.2017.7989500 Yamada A, Shiraishi Y, Miura H, Hashem HM, Tsuboko Y, Yamagishi M, Yambe T (2015) Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers. J Artif Organs 18:199–205. https://doi.org/10.1007/s10047-015-0827-z Nam S, Seo BR, Najibi AJ, McNamara SL, Mooney DJ (2023) Active tissue adhesive activates mechanosensors and prevents muscle atrophy. Nat Mater 22:249–259. https://doi.org/10.1038/s41563-022-01396-x Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034. https://doi.org/10.1002/1521-3773(20020617)41:12%3c2034::aid-anie2034%3e3.0.co;2-m Wache HM, Tartakowska DJ, Hentrich A, Wagner MH (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci Mater Med 14:109–112. https://doi.org/10.1023/a:1022007510352 Small W, Metzger MF, Wilson TS, Maitland DJ (2005) Laser-activated shape memory polymer microactuator for thrombus removal following ischemic stroke: preliminary in vitro analysis. IEEE J Sel Top Quantum Electron 11:892–901. https://doi.org/10.1109/jstqe.2005.857748 Hampikian JM, Heaton BC, Tong FC, Zhang Z, Wong CP (2006) Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mater Sci Eng C 26:1373–1379. https://doi.org/10.1016/j.msec.2005.08.026 Kim J-S, Lee D-Y, Koh J-S, Jung G-P, Cho K-J (2014) Component assembly with shape memory polymer fastener for microrobots. Smart Mater Struct 23:015011. https://doi.org/10.1088/0964-1726/23/1/015011 Hao M, Wang Y, Zhu Z, He Q, Zhu D, Luo M (2019) A compact review of IPMC as soft actuator and sensor: current trends, challenges, and potential solutions from our recent work. Front Robot AI 6:129. https://doi.org/10.3389/frobt.2019.00129 He Q, Yin G, Vokoun D, Shen Q, Lu J, Liu X, Xu X, Yu M, Dai Z (2022) Review on improvement, modeling, and application of ionic polymer metal composite artificial muscle. J Bionic Eng 19:279–298. https://doi.org/10.1007/s42235-022-00153-9 Guo S, Fukuda T, Nakamura T, Arai F, Oguro K, Negoro M (1996) Micro active guide wire catheter system-Characteristic evaluation, electrical model and operability evaluation of micro active catheter. In: IEEE international conference on robotics and automation, pp 2226–2231. https://doi.org/10.1109/ROBOT.1996.506495 Fang B-K, Ju M-S, Lin C-CK (2007) A new approach to develop ionic polymer–metal composites (IPMC) actuator: fabrication and control for active catheter systems. Sens Actuators A 137:321–329. https://doi.org/10.1016/j.sna.2007.03.024 Yoon WJ, Reinhall PG, Seibel EJ (2007) Analysis of electro-active polymer bending: a component in a low cost ultrathin scanning endoscope. Sens Actuators A 133:506–517. https://doi.org/10.1016/j.sna.2006.04.037 Kim SJ, Pugal D, Jung Y, Wong J, Kim KJ, Yim W (2010) A rod-shaped ionic polymer-metal composite for use as an active catheter-platform. In: Conference on smart materials, adaptive structures and intelligent systems, pp 145–151. https://doi.org/10.1115/SMASIS2010-3789 He Q, Huo K, Xu X, Yue Y, Yin G, Yu M (2020) The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device. Int J Smart Nano Mater 11:159–172. https://doi.org/10.1080/19475411.2020.1783020 Ruhparwar A et al (2014) Electrically contractile polymers augment right ventricular output in the heart. Artif Organs 38:1034–1039. https://doi.org/10.1111/aor.12300 Guo Y, Liu L, Liu Y, Leng J (2021) Review of dielectric elastomer actuators and their applications in soft robots. Adv Intell Syst 3:202000282. https://doi.org/10.1002/aisy.202000282 Almanza M, Clavica F, Chavanne J, Moser D, Obrist D, Carrel T, Civet Y, Perriard Y (2021) Feasibility of a dielectric elastomer augmented aorta. Adv Sci 8:2001974. https://doi.org/10.1002/advs.202001974 Martinez T, Chavanne J, Walter A, Civet Y, Perriard Y (2021) Design and modelling of a tubular dielectric elastomer actuator with constrained radial displacement as a cardiac assist device. Smart Mater Struct 30:105024. https://doi.org/10.1088/1361-665X/ac1fa8 Martinez T et al (2023) A novel soft cardiac assist device based on a dielectric elastomer augmented aorta: An in vivo study. Bioeng Transl Med 8:e10396. https://doi.org/10.1002/btm2.10396 Pirozzi I, Kight A, Liang X, Han AK, Ennis DB, Hiesinger W, Dual SA, Cutkosky MR (2022) Electrohydraulic vascular compression device (e-VaC) with integrated sensing and controls. Adv Mater Technol 8:2201196. https://doi.org/10.1002/admt.202201196 Kongahage D, Ruhparwar A, Foroughi J (2021) High performance artificial muscles to engineer a ventricular cardiac assist device and future perspectives of a cardiac sleeve. Adv Mater Technol 6:2000894. https://doi.org/10.1002/admt.202000894 Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH (2014) Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed 53:8045–8049. https://doi.org/10.1002/anie.201311047 Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, Nguyen TD, Gracias DH (2015) Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 7:3398–3405. https://doi.org/10.1021/am508621s Li H, Go G, Ko SY, Park J-O, Park S (2016) Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct 25:027001. https://doi.org/10.1088/0964-1726/25/2/027001 Kim Y, Cheng SS, Desai JP (2018) Active stiffness tuning of a spring-based continuum robot for MRI-guided neurosurgery. IEEE Trans Rob 34:18–28. https://doi.org/10.1109/TRO.2017.2750692 Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ (2019) Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv Intell Syst 2:1900086. https://doi.org/10.1002/aisy.201900086 Kim H, You JM, Kyung KU, Kwon DS (2023) Endoscopic surgery robot that facilitates insertion of the curved colon and ensures positional stability against external forces: K-COLON. Int J Med Robot Comp Assist Surg 19:e2493. https://doi.org/10.1002/rcs.2493 Takamatsu T, Endo Y, Fukushima R, Yasue T, Shinmura K, Ikematsu H, Takemura H (2023) Robotic endoscope with double-balloon and double-bend tube for colonoscopy, pp 1–16. https://doi.org/10.21203/rs.3.rs-2477183/v1 Kim Y-J, Cheng S, Kim S, Iagnemma K (2013) A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans Rob 29:1031–1042. https://doi.org/10.1109/tro.2013.2256313 Brancadoro M, Manti M, Grani F, Tognarelli S, Menciassi A, Cianchetti M (2019) Toward a variable stiffness surgical manipulator based on fiber jamming transition. Front Robot AI 6:12. https://doi.org/10.3389/frobt.2019.00012 Banerjee H, Li TK, Ponraj G, Kirthika SK, Lim CM, Ren H (2020) Origami-layer-jamming deployable surgical retractor with variable stiffness and tactile sensing. J Mech Robot 12:031010. https://doi.org/10.1115/1.4045424 Le HM, Cao L, Do TN, Phee SJ (2018) Design and modelling of a variable stiffness manipulator for surgical robots. Mechatronics 53:109–123. https://doi.org/10.1016/j.mechatronics.2018.05.012 Pyarali F, Hakami NIV, E Chaux G (2022) Meta analysis of diagnostic yield and complications with robotic-assisted navigation bronchoscopy. In: Chest. A2115. https://doi.org/10.1016/j.chest.2022.08.1746 Xin C et al (2021) Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 15:18048–18059. https://doi.org/10.1021/acsnano.1c06651 Darmawan BA et al (2022) Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J Mater Chem B 10:4509–4518. https://doi.org/10.1039/d2tb00760f Lee YW, Kim JK, Bozuyuk U, Dogan NO, Khan MTA, Shiva A, Wild AM, Sitti M (2023) Multifunctional 3D-printed pollen grain-inspired hydrogel microrobots for on-demand anchoring and cargo delivery. Adv Mater 35:e2209812. https://doi.org/10.1002/adma.202209812 Nguyen KT et al (2021) A magnetically guided self-rolled microrobot for targeted drug delivery, real-time x-ray imaging, and microrobot retrieval. Adv Healthcare Mater 10:e2001681. https://doi.org/10.1002/adhm.202001681 Lee YW, Chun S, Son D, Hu X, Schneider M, Sitti M (2022) A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot. Adv Mater 34:e2109325. https://doi.org/10.1002/adma.202109325 Li M, Tang Y, Soon RH, Dong B, Hu W, Sitti M (2022) Miniature coiled artificial muscle for wireless soft medical devices. Sci Adv 8:abm5616. https://doi.org/10.1126/sciadv.abm5616 Tang Y, Li M, Wang T, Dong X, Hu W, Sitti M (2022) Wireless miniature magnetic phase-change soft actuators. Adv Mater 34:e2204185. https://doi.org/10.1002/adma.202204185 Wang H, Zhang R, Chen W, Liang X, Pfeifer R (2016) Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans Mechatron 21:2977–2982. https://doi.org/10.1109/tmech.2016.2606491 Elgeneidy K, Lohse N, Jackson M (2018) Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors—a data-driven approach. Mechatronics 50:234–247. https://doi.org/10.1016/j.mechatronics.2017.10.005