Soft Color Morphology: A Fuzzy Approach for Multivariate Images

Journal of Mathematical Imaging and Vision - Tập 61 - Trang 394-410 - 2018
Pedro Bibiloni1,2, Manuel González-Hidalgo1,2, Sebastia Massanet1,2
1Soft Computing, Image Processing and Aggregation (SCOPIA) Research Group, Department of Mathematics and Computer Science, University of the Balearic Islands, Palma, Spain
2Balearic Islands Health Research Institute (IdISBa), Palma, Spain

Tóm tắt

Mathematical morphology is a framework composed by a set of well-known image processing techniques, widely used for binary and grayscale images, but less commonly used to process color or multivariate images. In this paper, we generalize fuzzy mathematical morphology to process multivariate images in such a way that overcomes the problem of defining an appropriate order among colors. We introduce the soft color erosion and the soft color dilation, which are the foundations of the rest of operators. Besides studying their theoretical properties, we analyze their behavior and compare them with the corresponding morphological operators from other frameworks that deal with color images. The soft color morphology outstands when handling images in the CIEL $${}^*a{}^*b{}^*$$ color space, where it guarantees that no colors with different chromatic values to the original ones are created. The soft color morphological operators prove to be easily customizable but also highly interpretable. Besides, they are fast operators and provide smooth outputs, more visually appealing than the crisp color transitions provided by other approaches.

Tài liệu tham khảo

Angulo, J., Serra, J.: Modelling and segmentation of colour images in polar representations. Image Vis. Comput. 25(4), 475–495 (2007) Aptoula, E., Lefevre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007) Aptoula, E., Lefevre, S.: On lexicographical ordering in multivariate mathematical morphology. Pattern Recognit. Lett. 29(2), 109–118 (2008) Baczyński, M., Jayaram, B.: Fuzzy Implications, Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008) Benavent, X., Dura, E., Vegara, F., Domingo, J.: Mathematical morphology for color images: an image-dependent approach. Math. Probl. Eng. 2012, 18 (2012) Bibiloni, P., González-Hidalgo, M., Massanet, S.: A real-time fuzzy morphological algorithm for retinal vessel segmentation. J. Real Time Image Process. (2017). https://doi.org/10.1007/s11554-018-0748-1 Bibiloni, P., González-Hidalgo, M., Massanet, S.: Soft color morphology. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2017) Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28(9), 1341–1387 (1995) Bouchet, A., Alonso, P., Pastore, J.I., Montes, S., Díaz, I.: Fuzzy mathematical morphology for color images defined by fuzzy preference relations. Pattern Recognit. 60, 720–733 (2016) Chanussot, J., Lambert, P.: Total ordering based on space filling curves for multivalued morphology. Comput. Imaging Vis. 12, 51–58 (1998) Chevallier, E., & Angulo, J.J: The irregularity issue of total orders on metric spaces and its consequences for mathematical morphology. J Math Imaging Vis. 54, 344–357 (2016). https://doi.org/10.1007/s10851-015-0607-7 De Baets, B.: A fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Springer, Berlin (1998) De Witte, V., Schulte, S., Nachtegael, M., Mélange, T., Kerre, E.E.: A lattice-based approach to mathematical morphology for greyscale and colour images. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, pp. 129–148. Springer, Berlin (2007) Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn. Prentice Hall (2007) González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy morphological hit-or-miss transform for grey-level images: a new approach. Fuzzy Sets Syst. 286, 30–65 (2016) Goutsias, J., Heijmans, H.J., Sivakumar, K.: Morphological operators for image sequences. Comput. Vis. Image Underst. 62(3), 326–346 (1995) Gu, C.: Multivalued Morphology and Its Application in Moving Object Segmentation and Tracking, pp. 345–352. Springer, Berlin (1996) Haas, A., Matheron, G., Serra, J.: Morphologie mathématique et granulométries en place. Ann. Mines 11, 736–753 (1967) Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987) Kerre, E.E., Nachtegael, M.: Classical and fuzzy approaches towards mathematical morphology. Physica 52, 3–56 (2013). (Chap. 1) Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, vol. 8. Springer, Berlin (2000) Lézoray, O.: Complete lattice learning for multivariate mathematical morphology. J. Vis. Commun. Image Represent. 35, 220–235 (2016) Louverdis, G., Vardavoulia, M.I., Andreadis, I., Tsalides, P.: A new approach to morphological color image processing. Pattern Recognit. 35(8), 1733–1741 (2002) Sartor, L.J., Weeks, A.R.: Morphological operations on color images. J. Electron. Imaging 10(2), 548–559 (2001) Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic, London (1982) Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances, vol. 2. Academic, London (1988) Valle, M.E., Valente, R.A.: Mathematical morphology on the spherical CIELab quantale with an application in color image boundary detection. J. Math. Imaging Vis. 57(2), 183–201 (2017) van de Gronde, J.J., Roerdink, J.B.: Group-invariant colour morphology based on frames. IEEE Trans. Image Process. 23(3), 1276–1288 (2014) Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE J. Sel. Top. Signal Process. 6(7), 753–763 (2012) Velasco-Forero, S., Angulo, J.: Vector ordering and multispectral morphological image processing. In: Celebi, M.E., Smolka, B. (eds.) Advances in Low-Level Color Image Processing, pp. 223–239. Springer, Berlin (2014) Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae, Wiley Series in Pure and Applied Optics, 2nd edn. Wiley, New York (2000)