Sodium ionic and gating currents in mammalian cells
Tóm tắt
Ionic and gating currents from voltage-gated sodium channels were recorded in mouse neuroblastoma cells using the path-clamp technique. Displacement currents were measured from whole-cell recordings. The gating charge displaced during step depolarizations increased with the applied membrane potential and reached saturating levels above 20 mV Prolonged large depolarizations produced partial immobilization of the gating charge, and only about one third of the displaced charge was quickly reversed upon return to negative holding potentials. The activation and inactivation properties of macroscopic sodium currents were characterized by voltage-clamp analysis of large outside-out patches and the single-channel conductance was estimated from nonstationary noise analysis. The general properties of the sodium channels in mouse neuroblastoma cells are very similar to those previously reported for various preparations of invertebrate and vertebrate nerve cells.