Inhibitor SGLT2: Cơ chế tác động trong suy tim

Heart Failure Reviews - Tập 26 - Trang 603-622 - 2020
Mieczysław Dutka1, Rafał Bobiński1, Izabela Ulman-Włodarz1, Maciej Hajduga1, Jan Bujok1, Celina Pająk1, Michał Ćwiertnia2
1Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biała, Bielsko-Biała, Poland
2Faculty of Health Sciences, Department of Emergency Medicine, University of Bielsko-Biała, Bielsko-Biała, Poland

Tóm tắt

Đái tháo đường là một yếu tố nguy cơ độc lập chính trong sự phát triển của suy tim (HF) và là một yếu tố tiên lượng bất lợi mạnh mẽ ở bệnh nhân HF. HF vẫn là nguyên nhân chính dẫn đến việc nhập viện ở bệnh nhân đái tháo đường và, như các nghiên cứu trước đây đã chỉ ra, khi HF xảy ra ở những bệnh nhân này, việc kiểm soát glycemic một cách tích cực không cải thiện được tiên lượng. Các nghiên cứu lâm sàng gần đây đánh giá một loại thuốc điều trị đái tháo đường mới, các chất ức chế đồng vận chuyển natri-glucose 2 (SGLT2) cho thấy một số kết quả có lợi bất ngờ. Bệnh nhân được điều trị bằng SGLT2 có sự giảm đáng kể cả về tỷ lệ tử vong do bệnh tim mạch (CV) và tỷ lệ tử vong do mọi nguyên nhân, cũng như ít phải nhập viện do HF hơn so với những người được dùng giả dược. Những lợi ích lâm sàng đáng kể này xuất hiện một cách nhanh chóng sau khi thuốc được sử dụng và không chỉ đơn thuần là do kiểm soát glycemic tốt hơn. Kết quả của các thử nghiệm lâm sàng mang tính đột phá này đã thay đổi quy trình lâm sàng trong việc quản lý bệnh nhân đái tháo đường có nguy cơ CV cao. Các thử nghiệm này đã kích thích nhiều nghiên cứu thực nghiệm nhằm giải thích các cơ chế tác động của nhóm thuốc đặc biệt này. Bài viết này trình bày tình trạng hiện tại của các kiến thức về cơ chế tác động của SGLT2 được phát triển để điều trị đái tháo đường và nhờ vào các tác động bảo vệ tim mạch của chúng, trong tương lai, có thể sẽ trở thành liệu pháp cho bệnh nhân suy tim.

Từ khóa

#đái tháo đường #suy tim #chất ức chế SGLT2 #tử vong do bệnh tim mạch #kiểm soát glycemic

Tài liệu tham khảo

Abdul-Ghani M, Stefano Del Prato S, Chilton R, DeFronzo RA (2016) SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care 39:717–725. https://doi.org/10.2337/dc16-0041 Kalra S (2016) Sodium-glucose cotransporter 2 (SGLT2) inhibitors and cardiovascular disease: a systematic review. Cardiol Ther 5:161–168. https://doi.org/10.1007/s40119-016-0069-z Tamargo J (2019) Sodium–glucose cotransporter 2 inhibitors in heart failure: potential mechanisms of action, adverse effects and future developments. European Cardiology Rev 14(1):23–32. https://doi.org/10.15420/ecr.2018.34.2 Packer M (2019) Lessons learned from the DAPA-HF trial concerning the mechanisms of benefit of SGLT2 inhibitors on heart failure events in the context of other large-scale trials nearing completion. Cardiovasc Diabetol 18:129. https://doi.org/10.1186/s12933-019-0938-6 Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N et al (2018) Canagliflozin for primary and secondary prevention of cardiovascular events results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation 137:323–334. https://doi.org/10.1161/CIRCULATIONAHA.117.032038 Rĺdholm K, Figtree G, Perkovic V, Solomon SD, Mahaffey KW et al (2018) Canagliflozin and heart failure in type 2 diabetes mellitus results from the CANVAS program. Circulation 138:458–468. https://doi.org/10.1161/CIRCULATIONAHA.118.034222 Shaha SR, Najimb NI, Abbasic Z, Fatimad M, Jangdae AA et al (2018) Canagliflozin and cardiovascular disease- results of the CANVAS trial. J Community Hosp Intern Med Perspect 8(5):267–268. https://doi.org/10.1080/20009666.2018.1521245 Seza A, Sekino H, Unosawa S, Taoka M, Osaka S et al (2019) Canagliflozin for Japanese patients with chronic heart failure and type II. Cardiovasc Diabetol 18:76. https://doi.org/10.1186/s12933-019-0877-2 Heston TF, Olson AH, Randall NR (2017) Canagliflozin lowers blood sugar, but does it also lower cardiovascular risk? Maybe not. Ann Transl Med 5(23):473. https://doi.org/10.21037/atm.2017.09.28 Kondo H, Takahashi N (2019a) Reduced hospitalization for heart failure using anti-diabetic drug dapagliflozin: implications of DECLARE–TIMI 58 for the basic science community . Cardiovascular Res 115:54–57. https://doi.org/10.1093/cvr/cvz073 Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720 Butler J, Hamo CE, Filippatos G, Pocock SJ, Bernstein RA, Brueckmann M et al (2017) The potential role and rationale for treatment of heart failure with sodium–glucose co-transporter 2 inhibitors. Eur J Heart Fail 19:1390–1400. https://doi.org/10.1002/ejhf.933 Maejima Y (2019) SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med 6:186. https://doi.org/10.3389/fcvm.2019.00186 Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151 Arnott C, Li Q, Kang A, Neuen BL, Bompoint S et al (2020) Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc 9:e014908. https://doi.org/10.1161/JAHA.119.014908 Verma S, McMurray JJV (2019) The serendipitous story of SGLT2 inhibitors in heart failure new insights from DECLARE-TIMI 58. Circulation 139:2537–2541. https://doi.org/10.1161/CIRCULATIONAHA.119.040514 McMurray JJ, Gerstein HC, Holman RR, Pfeffer MA (2014) Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2:843–851. https://doi.org/10.1016/S2213-8587(14)70031-2 Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G et al (2018) Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:853–872. https://doi.org/10.1002/ejhf.1170 Lam CSP, Chandramouli C, Ahooja V, Verma S (2019) SGLT-2 inhibitors in heart failure: current management, unmet needs, and therapeutic prospects. J Am Heart Assoc 8(20):e013389. https://doi.org/10.1161/JAHA.119.013389 Vaduganathan M, Januzzi JL Jr (2019) Preventing and treating heart failure with sodium-glucose co-transporter 2 inhibitors. Am J Cardiol 124:S20–S27. https://doi.org/10.1016/j.amjcard.2019.10.026 Zou CY, Liu XK, Sang YQ, Wang B, Liang J (2019) Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes. A meta-analysis. Medicine 98(49):e18245. https://doi.org/10.1097/MD.0000000000018245 Scheen AJ (2018) Cardiovascular effects of new oral glucose-lowering agents DPP-4 and SGLT-2 inhibitors. Circ Res 122(10):1439–1459. https://doi.org/10.1161/CIRCRESAHA.117.311588 Anderson SL, Marrs JC (2017) Antihyperglycemic medications and cardiovascular risk reduction. European Endocrinology 13(2):86–90. https://doi.org/10.17925/EE.2017.13.02.86 Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H et al (2012) Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J Pharmacol Exp Ther 341(3):692–701. https://doi.org/10.1124/jpet.112.191593 Scheen AJ (2014) Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations. Expert Opin Drug Metab Toxicol 10:647–663. https://doi.org/10.1517/17425255.2014.873788 Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC et al (2018) Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol 21(9):1575. https://doi.org/10.3389/fphys.2018.01575 Mannucci E, Dicembrini I, Nreu B, Monami M (2019) Exploring the heterogeneity of the effects of SGLT-2 inhibitors in cardiovascular outcome trials. Nutr Metab Cardiovasc Dis 30(1):71–76. https://doi.org/10.1016/j.numecd.2019.07.018 Custodio JS Jr, Duraes AR, Abreu M, Albuquerque RN (2018) SGLT2 inhibition and heart failure-current concepts. Heart Fail Rev 23(3):409–418. https://doi.org/10.1007/s10741-018-9703-2 Mosleh W, Sharma A, Sidhu MS, Page B, Sharma UC et al (2017) The role of SGLT-2 inhibitors as part of optimal medical therapy in improving cardiovascular outcomes in patients with diabetes and coronary artery disease. Cardiovasc Drugs Ther 31(3):311–318. https://doi.org/10.1007/s10557-017-6729-y Skelley JW, Carter BS, Roberts MZ (2018) Clinical potential of canagliflozin in cardiovascular risk reduction in patients with type 2 diabetes. Vasc Health Risk Manag 14:419–428. https://doi.org/10.2147/VHRM.S168472 Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D et al (2019) (2019) Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: data from the CANVAS program. JASN 30:2229–2242. https://doi.org/10.1681/ASN.2019010064 Figtree GA, Rĺdholm K, Barrett TD, Perkovic V, Mahaffey KW et al (2019) Effects of canagliflozin on heart failure outcomes associated with preserved and reduced ejection fraction in type 2 diabetes mellitus results from the CANVAS program. Circulation 139:2591–2593. https://doi.org/10.1161/CIRCULATIONAHA.119.040057 Carbone S, Dixon DL (2019) The CANVAS Program: implications of canagliflozin on reducing cardiovascular risk in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 18:64. https://doi.org/10.1186/s12933-019-0869-2 Nassif ME, Kosiborod M (2019) Effects of sodium glucose cotransporter type 2 inhibitors on heart failure. Diabetes Obes Metab 21(Suppl. 2):19–23. https://doi.org/10.1111/dom.13678 Udell JA, Yuan Z, Ryan P, Rush T, Sicignano NM et al (2019) Cardiovascular outcomes and mortality after initiation of canagliflozin: analyses from the EASEL Study. Endocrinol Diab Metab 00:e00096. https://doi.org/10.1002/edm2.96 Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O et al (2019) Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction subanalysis from the DECLARE-TIMI 58 trial. Circulation 139:2516–2527. https://doi.org/10.1161/CIRCULATIONAHA.119.039996 Avgerinos I, Liakos A, Tsapas A, Bekiari E (2019) cardiovascular risk reduction in type 2 diabetes: therapeutic potential of dapagliflozin. Diabetes Metab Syndr Obes: Targets and Therapy 12:2549–2557 Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A et al (2019) Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139:2528–2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130 Kondo H, Takahashi N (2019b) Reduced hospitalization for heart failure using anti-diabetic drug dapagliflozin: implications of DECLARE–TIMI 58 for the basic science community. Cardiovasc Res 115:54–57. https://doi.org/10.1093/cvr/cvz073 Norhammar A, Bodegård J, Nyström T, Thuresson M, Nathanson D et al (2019) Dapagliflozin and cardiovascular mortality and disease outcomes in a population with type 2 diabetes similar to that of the DECLARE-TIMI 58 trial: a nationwide observational study. Diabetes Obes Metab 21:1136–1145. https://doi.org/10.1111/dom.13627 Clegg LE, Heerspink HJL, Penland RC, Tang W, Boulton DW et al (2019) Reduction of cardiovascular risk and improved estimated glomerular filtration rate by SGLT2 inhibitors, including dapagliflozin, is consistent across the class: an analysis of the placebo arm of EXSCEL. Diabetes Care 42:318–326. https://doi.org/10.2337/dc18-1871 Raz I, Cernea S, Cahn A (2020) SGLT2 inhibitors for primary prevention of cardiovascular events. J Diabetes 12:5–7. https://doi.org/10.1111/1753-0407.13004 Rådholm K, Wu JH, Wong MG, Foote C, Fulcher G et al (2018) Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes - a systematic review. Diabetes Res Clin Pract 140:118–128. https://doi.org/10.1016/j.diabres.2018.03.027 Budoff MJ, Wilding JP (2017) Effects of canagliflozin on cardiovascular risk factors in patients with type 2 diabetes mellitus. Int J Clin Pract 71:e12948. https://doi.org/10.1111/ijcp.12948 Ramos M, Ustyugova A, Hau N, Lamotte M (2020) Cost–effectiveness of empagliflozin compared with liraglutide based on cardiovascular outcome trials in type II diabetes. J Comp Eff Res 9(11):781–794 Ramos M, Foos V, Ustyugova A, Hau N, Gandhi P et al (2019) Cost–effectiveness analysis of empagliflozin in comparison to sitagliptinand saxagliptin based on cardiovascular outcome trials in patients with type II diabetes and established cardiovascular disease. Diabetes Ther 10(6):2153–2167 Daacke I, Kandaswamy P, Tebboth A, Kansal A, Reifsnider O (2016) Cost–effectiveness of empagliflozin (Jardiance) in the treatment of patients with Type II diabetes mellitus (T2DM) in the UK based on EMPA-REG OUTCOME data. Value Health 19(7):A673 Iannazzo S, Mannucci E, Reifsnider O, Maggioni AP (2017). Cost–effectiveness analysis of empagliflozin in the treatment of patients with Type II diabetes and established cardiovascular disease in Italy, based on the results of the EMPA-REG OUTCOME study. Farmeconomia Health Econ Ther Pathw 18(1), DOI: https://doi.org/10.7175/fe.v18i1.1332 Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl of Med. https://doi.org/10.1056/NEJMoa2022190 Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K et al (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 136:249–259. https://doi.org/10.1161/CIRCULATIONAHA.117.029190 Ghosh RK, Ghosh G, Gupta M, Bandyopadhyay D, Akhtar T et al (2019) Sodium glucose co-transporter 2 inhibitors and heart failure. Am J Cardiol 124(11):1790–1796. https://doi.org/10.1016/j.amjcard.2019.08.038 McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303 Kosiborod MN, Jhund PS, Docherty KF, Diez M, Petrie MC et al (2020) Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction results from the DAPA-HF trial. Circulation 141:90–99. https://doi.org/10.1161/CIRCULATIONAHA.119.044138 Martinez FA, Serenelli M, Nicolau JC, Petrie MC, Chiang C-E et al (2019) Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age insights from DAPA-HF. Circulation 141:100–111. https://doi.org/10.1161/CIRCULATIONAHA.119.044133 McMurray JJV, DeMets DL, Inzucchi SE, Křber L, Kosiborod MN et al (2019) The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail 21:1402–1411. https://doi.org/10.1002/ejhf.1548 Irace C, Cutruzzolà A, Parise M, Fiorentino R, Frazzetto M et al (2020) Effect of empagliflozin on brachial artery shear stress and endothelial function in subjects with type 2 diabetes: results from an exploratory study. Diab Vasc Dis Res 17(1):1479164119883540. https://doi.org/10.1177/1479164119883540 Wojcik C, Warden BA (2019) Mechanisms and evidence for heart failure benefits from SGLT2 inhibitors. Curr Cardiol Rep 21(10):130. https://doi.org/10.1007/s11886-019-1219-4 Liu B, Wang Y, Zhang Y, Yan B (2019) Mechanisms of protective effects of SGLT2 inhibitors in cardiovascular disease and renal dysfunction. Curr Top Med Chem 19(20):1818–1849. https://doi.org/10.2174/1568026619666190828161409 Garg V, Verma S, Connelly K (2019) Mechanistic insights regarding the role of SGLT2 inhibitors and GLP1 agonist drugs on cardiovascular disease in diabetes. Prog Cardiovasc Dis 62(4):349–357. https://doi.org/10.1016/j.pcad.2019.07.005 Martens P, Mathieu C, Verbrugge F (2017) Promise of SGLT2 inhibitors in heart failure: diabetes and beyond. Curr Treat Options Cardiovasc Med 19(3):23. https://doi.org/10.1007/s11936-017-0522-x Bonnet F, Scheen AJ (2018) Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab 44(6):457–464. https://doi.org/10.1016/j.diabet.2018.09.005 Tan SA, Tan L (2018) Empagliflozin and canagliflozin attenuate inflammatory cytokines interferon-γ, tumor necrosis factor-α, interleukin-6: possible mechanism of decreasing cardiovascular risk in diabetes mellitus. JACC 71(11):1830 Stevena S, Oelzea M, Hanfa A, Kröller-Schöna S, Kashania F et al (2017) The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biology 13:370–385. https://doi.org/10.1016/j.redox.2017.06.009 Li C, Zhang J, Xue M, Li X, Han F et al (2019) SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 18:15. https://doi.org/10.1186/s12933-019-0816-2 Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M et al (2014) The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE 9(11):e112394. https://doi.org/10.1371/journal.pone.0112394 Sindhuja M, Muthiah NS, Rajeswari R (2017) Evaluation of antioxidant property of empagliflozin-Dpph assay and nitric oxide scavenging activity (in vitro method). J Chem Pharm Res 9(6):165–168 Oelze M, Kröller-Schön S, Mader M, Zinßius E, Stamm P et al (2014) Effects of empagliflozin on oxidative stress and endothelial dysfunction in STZ-induced type 1 diabetic rat. Diabetol und Stoffwechsel 9:P247. https://doi.org/10.1055/s-0034-1375104 Bertero E, Roma LP, Ameri P, Maack C (2018) Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res 114:12–18. https://doi.org/10.1093/cvr/cvx149 Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K et al (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214. https://doi.org/10.1126/science.1227166 Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M et al (2015) The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269. https://doi.org/10.1038/nm.3804 Adingupu DD, Göpel SO, Grönros J, Behrendt M, Sotak M et al (2019) SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice. Cardiovasc Diabetol 18:16. https://doi.org/10.1186/s12933-019-0820-6 Verma S, Rawat S, Ho KL, Wagg CS, Zhang L et al (2018) Empagliflozin increases cardiac energy production in diabetes novel translational insights into the heart failure benefits of SGLT2 inhibitors. J Am Coll Cardiol Basic Trans Science 3(5):575–587 Oh CM, Cho S, Jang JY, Kim H, Chun S (2019) Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure. Korean Circ J 49(12):1183–1195. https://doi.org/10.4070/kcj.2019.0180 Sciarretta S, Maejima Y, Zablocki D, Sadoshima J (2018) The role of autophagy in the heart. Annu Rev Physiol 80:1–26. https://doi.org/10.1146/annurev-physiol-021317-121427 Chen Y, Liu Y, Dorn GW II (2011) Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res 109:1327–1331. https://doi.org/10.1161/CIRCRESAHA.111.258723 Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM et al (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022. https://doi.org/10.1161/CIRCULATIONAHA.109.906610 Takagi S, Li J, Takagaki Y, Kitada M, Nitta K et al (2018) Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J Diabetes Invest 9:1025–1032. https://doi.org/10.1111/jdi.12802 Durak A, Olgar Y, Degirmenci S, Akkus E, Tuncay E et al (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricularrepolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17:144. https://doi.org/10.1186/s12933-018-0790-0 Zhou H, Wang S, Zhu P, Hu S, Chen Y et al (2018) Empagliflozin rescues diabetic myocardial microvascular injury via AMPKmediated inhibition of mitochondrial fission. Redox Biol 15:335–346. https://doi.org/10.1016/j.redox.2017.12.019 Mizuno M, Kuno A, Yano T, Miki T, Oshima H et al (2018) Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Physiol Rep 6:e13741. https://doi.org/10.14814/phy2.13741 Aroor AR, Das NA, Carpenter AJ, Habibi JH, Jia G et al (2018) Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol 17:108. https://doi.org/10.1186/s12933-018-0750-8 Lee DM, Battson ML, Jarrell DK, Hou S, Ecton KE et al (2018) SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice. Cardiovasc Diabetol 17:62. https://doi.org/10.1186/s12933-018-0708-x Lunder M, Janić M, Japelj M, Juretič A, Janež A et al (2018) Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol 17:153. https://doi.org/10.1186/s12933-018-0797-6 Hallow KM, Helmlinger G, Greasley P, McMurray JJV, Boulton DW (2018) Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 20(3):479–487. https://doi.org/10.1111/dom.13126 Jones DP, Jyoti Patel J (2018) Therapeutic approaches targeting inflammation in cardiovascular disorders. Biology 7(49):1–14. https://doi.org/10.3390/biology7040049 Nikolaos G, Frangogiannis MD (2014) The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J Cardiovasc Pharmacol 63(3):185–195. https://doi.org/10.1097/FJC.0000000000000003 Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 11:119–129. https://doi.org/10.1093/eurjhf/hfn043 Katayama T (2003) Significance of acute-phase inflammatory reactants as an indicator of prognosis after acute myocardial infarction: Which is the most useful predictor? J Cardiol 42:49–56 Pearson TA, Mensah GA, Wayne RA, Anderson JL, Cannon RO et al (2003) Markers of inflammation and cardiovascular disease application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511 Juni RP, Kuster DWD, Goebel M, Musters HM, RJP, et al (2019) Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. J Am Coll Cardiol Basic Trans Science 4(5):575–591 Wrigley BJ, Lip GYH, Shantsila E (2015) The role of monocytes and inflammation in the pathophysiology of heart failure. Eur J Heart Fail 13:1161–1171. https://doi.org/10.1093/eurjhf/hfr122 Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL et al (2013) Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail 15:1350–1362. https://doi.org/10.1093/eurjhf/hft106 Gruson D, Ahn SA, Rousseau MF (2011) Biomarkers of inflammation and cardiac remodeling: the quest of relevant companions for the risk stratification of heart failure patients is still ongoing. Biochemia Mediea 21(3):254–263 van Wezenbeek J, Canada JM, Ravindra K, Carbone S, Trankle CR et al (2018) C-reactive protein and N-terminal pro-brain natriuretic peptide levels correlate with impaired cardiorespiratory fitness in patients with heart failure across a wide range of ejection fraction. Front Cardiovasc Med 5(178):1–10 Elster SK, Braunwald E, Wood HF (1956) A study of C-reactive protein in the serum of patients with congestive heart failure. Am Heart J 51:533–541. https://doi.org/10.1016/0002-8703(56)90099-0 Anand IS, Latini R, Florea VG, Kuskowski MA, Rector T et al (2005) C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation 112:1428–1434 Koller L, Kleber M, Goliasch G, Sulzgruber P, Scharnag H et al (2014) C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur J Heart Fail 16:758–766. https://doi.org/10.1002/ejhf.104 Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB et al (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27(5):1201–1206 Hartupee J, Mann DL (2013) Positioning of inflammatory biomarkers in the heart failure landscape. J Cardiovasc Transl Res 6:485–492 Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J et al (2012) Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125:1652–1663 Zhang Y, Bauersachs J, Langer HF (2017) Immune mechanisms in heart failure. Eur J Heart Fail 19:1379–1389. https://doi.org/10.1002/ejhf.942 Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ et al (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598. https://doi.org/10.1002/ejhf.497 Dutka M, Bobiński R, Ulman-Włodarz I, Hajduga M, Bujok J et al (2020) Various aspects of inflammation in heart failure . Heart Fail Rev 25:537–548. https://doi.org/10.1007/s10741-019-09875-1 Seropian IM, Toldo S, Van Tassell BW, Abbate A (2014) Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J Am Coll Cardiol 63(16):1593–1603. https://doi.org/10.1016/j.jacc.2014.01.014 Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 116(7):1254–1268. https://doi.org/10.1161/CIRCRESAHA.116.302317 Wang J, Huang W, Xu R, NieY CX et al (2012) MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med 16(9):2150–2160 Moses HL, Roberts AB, Derynck R (2016) The discovery and early days of TGFβ: a historical perspective. Cold Spring Harb Perspect Biol 8:a021865 Travis MA, Sheppard D (2014) TGFβ activation and function in immunity. Annu Rev Immunol 32:5182 Kim YJ, Carvalho FC, Souza JA, Gonçalves PC, Nogueira AV et al (2013) Topical application of the lectin Artin M accelerates wound healing in rat oral mucosa by enhancing TGFβ and VEGF production. Wound Repair Regen 21:456463 Sugiyama D, Kulkeaw K, Mizuochi C (2013) TGFbeta1 upregulates extracellular matrix production in mouse hepatoblasts. Mech Dev 130:195206 Zhou P, Shi L, Li Q, Lu D (2015) Overexpression of RACK1 inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factorβ1/Smad signaling pathway. Int J Clin Exp Med 8:1526215268 Zhao M, Zheng S, Yang J, Wu Y, Ren Y et al (2015) Suppression of TGFβ1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS ONE 10:e0121312 Yan L, Wei X, Tang QZ, Feng J, Zhang Y et al (2011) Cardiacspecific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGFβ1Smad signalling. Cardiovasc Res 92:8594 Chen K, Chen W, Liu SL, Wu TS, Yu KF et al (2018) Epigallocatechingallate attenuates myocardial injury in a mouse model of heart failure through TGFβ1/Smad3 signaling pathway. Mol Med Rep 17:7652–7660. https://doi.org/10.3892/mmr.2018.8825 Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J 41:255–323. https://doi.org/10.1093/eurheartj/ehz486