Sodium Channel β Subunits: Anything but Auxiliary

Neuroscientist - Tập 7 Số 1 - Trang 42-54 - 2001
Lori L. Isom1
1Department of Pharmacology, The University of Michigan, Ann Arbor,

Tóm tắt

Voltage-gated sodium channels are glycoprotein complexes responsible for initiation and propagation of action potentials in excitable cells such as central and peripheral neurons, cardiac and skeletal muscle myocytes, and neuroendocrine cells. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming α subunit and two auxiliary β subunits. The α subunits form a gene family with at least 10 members. Mutations in α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome, and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode sodium channel β subunits with at least one alternative splice product. A mutation in the β1 subunit gene has been linked to generalized epilepsy with febrile seizures plus type 1 (GEFS + 1) in a human family with this disease. Sodium channel β subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. More recently, they have been shown to function as cell adhesion molecules in terms of interaction with extracellular matrix, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. Structure-function studies have resulted in the preliminary assignment of functional domains in the β1 subunit. A sodium channel signaling complex is proposed that involves β subunits as channel modulators as well as cell adhesion molecules, other cell adhesion molecules such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin.

Từ khóa


Tài liệu tham khảo

10.1056/NEJM199705293362207

10.1016/0959-4388(95)80040-9

10.1161/01.RES.83.2.141

Bieber AJ, 1994, Drosophila melanogaster: practical uses in cell biology, 683

10.1016/S0306-4522(98)00415-1

10.1152/physrev.1992.72.suppl_4.S15

Catterall WA, 1999, Adv Neurol, 79, 441

10.1016/S0896-6273(00)81133-2

10.1161/01.RES.86.4.441

10.1007/BF00410190

10.1083/jcb.135.5.1355

10.1016/0014-5793(96)00273-6

10.1038/74159

10.1007/s004410050938

10.1083/jcb.137.3.703

10.1523/JNEUROSCI.18-01-00128.1998

10.1016/0959-4388(93)90117-H

10.1074/jbc.271.45.27975

10.1016/0968-0004(91)90116-D

10.1038/383307b0

10.1016/0896-6273(94)90436-7

10.1126/science.1375395

10.1016/0092-8674(95)90121-3

10.1074/jbc.270.7.3306

Kamiguchi H, 1997, J Neurosci Methods, 49, 1

10.1074/jbc.275.2.1079

10.1083/jcb.110.4.1341

10.1016/S0896-6273(00)80952-6

10.1073/pnas.91.25.12351

10.1523/JNEUROSCI.16-22-07117.1996

10.1074/jbc.275.15.11383

Malhotra JD, 1999, Soc Neurosci Abstr, 25, 1731

10.1074/jbc.273.7.3954

10.1074/jbc.274.46.32638

Meadows L, J Neurochem

10.1016/S0021-9258(18)41584-0

10.1073/pnas.030362197

10.1016/S0021-9258(19)74309-9

10.1016/S0304-3940(97)00694-0

10.1073/pnas.91.21.9985

10.1016/0092-8674(95)90312-7

10.1006/geno.1998.5735

10.1074/jbc.274.46.32647

10.1038/74805

10.1073/pnas.97.7.3666

10.1074/jbc.271.11.5953

10.1016/S0955-0674(97)80115-9

10.1073/pnas.82.14.4847

10.1016/0092-8674(86)90664-1

10.1523/JNEUROSCI.16-21-06775.1996

10.1016/S0006-3495(99)77036-0

10.1006/geno.1997.4669

10.1073/pnas.95.26.15753

Undrovinas AI, 1995, Am J Physiol, 269, H203

10.1038/448

10.1523/JNEUROSCI.19-11-04245.1999

10.1083/jcb.140.3.675

10.1074/jbc.274.37.26511