Sodium Butyrate Induced Neural Stem/Progenitor Cell Death in an Experimental Model of Japanese Encephalitis

Anirudh Satheesan1, Shivangi Sharma1, Anirban Basu2
1National Brain Research Centre, Manesar, Haryana, 122052, India.
2National Brain Research Centre, Manesar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569. https://doi.org/10.1152/physrev.00055.2003

Ariff IM, Thounaojam MC, Das S, Basu A (2013) Japanese Encephalitis Virus Infection Alters Both Neuronal and Astrocytic Differentiation of Neural Stem/Progenitor Cells. J NeuroImmune Pharmacol 8:664–676. https://doi.org/10.1007/s11481-013-9455-7

Ash RJ (1986) Butyrate-induced reversal of herpes simplex virus restriction in neuroblastoma cells. Virology 155:584–592. https://doi.org/10.1016/0042-6822(86)90218-7

Barcenilla A, Pryde SE, Martin JC et al (2000) Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut. Appl Environ Microbiol 66:1654–1661. https://doi.org/10.1128/AEM.66.4.1654-1661.2000

Belkaid Y, Hand TW (2014) Role of the Microbiota in Immunity and Inflammation. Cell 157:121–141. https://doi.org/10.1016/j.cell.2014.03.011

Bohan C, York D, Srinivasan A (1987) Sodium butyrate activates human immunodeficiency virus long terminal repeat--directed expression. Biochem Biophys Res Commun 148:899–905. https://doi.org/10.1016/s0006-291x(87)80217-6

Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett 625:56–63. https://doi.org/10.1016/j.neulet.2016.02.009

Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158. https://doi.org/10.1126/scitranslmed.3009759

Brnic D, Stevanovic V, Cochet M et al (2012) Borna disease virus infects human neural progenitor cells and impairs neurogenesis. J Virol 86:2512–2522. https://doi.org/10.1128/JVI.05663-11

Campbell GL, Hills SL, Fischer M et al (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89:766–774E. https://doi.org/10.2471/BLT.10.085233

Chemudupati M, Kenney AD, Smith AC et al (2020) Butyrate Reprograms Expression of Specific Interferon-Stimulated Genes. J Virol 94:e00326–e00320. https://doi.org/10.1128/JVI.00326-20

Corrêa R, de Oliveira SI, Braz-de-Melo HA et al (2021) Gut microbiota modulation induced by Zika virus infection in immunocompetent mice. Sci Rep 11:1421. https://doi.org/10.1038/s41598-020-80893-y

Corrêa-Oliveira R, Fachi JL, Vieira A et al (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol 5:e73. https://doi.org/10.1038/cti.2016.17

Cristiano C, Hoxha E, Lippiello P et al (2022) Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice offspring. Biomed Pharmacother 156:113870. https://doi.org/10.1016/j.biopha.2022.113870

Cummings JH, Pomare EW, Branch WJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227. https://doi.org/10.1136/gut.28.10.1221

Das S, Basu A (2008) Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation. J Neurochem 106:1624–1636. https://doi.org/10.1111/j.1471-4159.2008.05511.x

Das S, Ghosh D, Basu A (2009) Japanese Encephalitis Virus Induce Immuno-Competency in Neural Stem/Progenitor Cells. PLoS One 4:e8134. https://doi.org/10.1371/journal.pone.0008134

DeDiego ML, Nieto-Torres JL, Regla-Nava JA et al (2014) Inhibition of NF-κB-Mediated Inflammation in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice Increases Survival. J Virol 88:913–924. https://doi.org/10.1128/JVI.02576-13

Devhare P, Meyer K, Steele R et al (2017) Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis 8:e3106–e3106. https://doi.org/10.1038/cddis.2017.517

Finkel Z, Esteban F, Rodriguez B et al (2021) Diversity of Adult Neural Stem and Progenitor Cells in Physiology and Disease. Cells 10:2045. https://doi.org/10.3390/cells10082045

Forsythe P, Sudo N, Dinan T et al (2010) Mood and gut feelings. Brain Behav Immun 24:9–16. https://doi.org/10.1016/j.bbi.2009.05.058

Gardian G, Browne SE, Choi D-K et al (2005) Neuroprotective Effects of Phenylbutyrate in the N171-82Q Transgenic Mouse Model of Huntington’s Disease*. J Biol Chem 280:556–563. https://doi.org/10.1074/jbc.M410210200

Ghoshal A, Das S, Ghosh S et al (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55:483–496. https://doi.org/10.1002/glia.20474

Golub EI, Li GR, Volsky DJ (1991) Induction of dormant HIV-1 by sodium butyrate: involvement of the TATA box in the activation of the HIV-1 promoter. AIDS 5:663–668

Guo T-T, Zhang Z, Sun Y et al (2023) Neuroprotective Effects of Sodium Butyrate by Restoring Gut Microbiota and Inhibiting TLR4 Signaling in Mice with MPTP-Induced Parkinson’s Disease. Nutrients 15:930. https://doi.org/10.3390/nu15040930

Haase S, Haghikia A, Gold R, Linker RA (2018) Dietary fatty acids and susceptibility to multiple sclerosis. Mult Scler 24:12–16. https://doi.org/10.1177/1352458517737372

Humann J, Mann B, Gao G et al (2016) Bacterial Peptidoglycan Traverses the Placenta to Induce Fetal Neuroproliferation and Aberrant Postnatal Behavior. Cell Host Microbe 19:388–399. https://doi.org/10.1016/j.chom.2016.02.009

Imitola J, Raddassi K, Park KI et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci 101:18117–18122. https://doi.org/10.1073/pnas.0408258102

Jang H-M, Lee H-J, Jang S-E et al (2018) Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol 11:1386–1397. https://doi.org/10.1038/s41385-018-0042-3

Jaworska J, Zalewska T, Sypecka J, Ziemka-Nalecz M (2019) Effect of the HDAC Inhibitor, Sodium Butyrate, on Neurogenesis in a Rat Model of Neonatal Hypoxia-Ischemia: Potential Mechanism of Action. Mol Neurobiol 56:6341–6370. https://doi.org/10.1007/s12035-019-1518-1

Jin K, Peel AL, Mao XO et al (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci 101:343–347. https://doi.org/10.1073/pnas.2634794100

Jiyarom B, Giannakopoulos S, Strange DP et al (2023) RIG-I and MDA5 are modulated by bone morphogenetic protein (BMP6) and are essential for restricting Zika virus infection in human Sertoli cells. Front Microbiol 13:1062499. https://doi.org/10.3389/fmicb.2022.1062499

Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37:267–274. https://doi.org/10.1016/j.nbd.2009.11.002

Kim DS, Kwon J-E, Lee SH et al (2018) Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells. Front Immunol 9:1525. https://doi.org/10.3389/fimmu.2018.01525

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

Koh S-H, Park H-H (2017) Neurogenesis in Stroke Recovery. Transl Stroke Res 8:3–13. https://doi.org/10.1007/s12975-016-0460-z

Kratsman N, Getselter D, Elliott E (2016) Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102:136–145. https://doi.org/10.1016/j.neuropharm.2015.11.003

Li Z, Zhu H, Guo Y et al (2020) Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J Neurochem 155:448–461. https://doi.org/10.1111/jnc.15031

Lin J-Y, Kuo R-L, Huang H-I (2019) Activation of type I interferon antiviral response in human neural stem cells. Stem Cell Res Ther 10:387. https://doi.org/10.1186/s13287-019-1521-5

Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65:63–68. https://doi.org/10.1016/s0031-9384(98)00145-0

Mitchell RW, On NH, Del Bigio MR et al (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746. https://doi.org/10.1111/j.1471-4159.2011.07245.x

Mou Y, Du Y, Zhou L et al (2022) Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol 13:796288. https://doi.org/10.3389/fimmu.2022.796288

Mukherjee S, Singh N, Sengupta N et al (2017) Japanese encephalitis virus induces human neural stem/progenitor cell death by elevating GRP78, PHB and hnRNPC through ER stress. Cell Death Dis 8:e2556. https://doi.org/10.1038/cddis.2016.394

Mutnal MB, Cheeran MC-J, Hu S, Lokensgard JR (2011) Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain. PLoS One 6:e16211. https://doi.org/10.1371/journal.pone.0016211

Olejnik J, Forero A, Deflubé LR et al (2017) Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. J Virol 91:e00179–e00117. https://doi.org/10.1128/JVI.00179-17

Paparo L, Maglio MA, Cortese M et al (2022) A New Butyrate Releaser Exerts a Protective Action against SARS-CoV-2 Infection in Human Intestine. Molecules 27:862. https://doi.org/10.3390/molecules27030862

Peters CE, Carette JE (2021) Return of the Neurotropic Enteroviruses: Co-Opting Cellular Pathways for Infection. Viruses 13:166. https://doi.org/10.3390/v13020166

Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139. https://doi.org/10.1016/S0378-1097(02)01106-0

Puccini JM, Ruller CM, Robinson SM et al (2014) Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. Lab Investig 94:161–181. https://doi.org/10.1038/labinvest.2013.138

Razdan A, Giri RK, Vrati S, Malik P (1999) Complete nucleotide sequence of an Indian strain of Japanese encephalitis virus: sequence comparison with other strains and phylogenetic analysis. Am J Tropic Med Hyg 61:677–680. https://doi.org/10.4269/ajtmh.1999.61.677

Rehwinkel J, Gack MU (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20:537–551. https://doi.org/10.1038/s41577-020-0288-3

Righetto I, Gasparotto M, Casalino L et al (2023) Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules 13:169. https://doi.org/10.3390/biom13010169

Saresella M, Marventano I, Barone M et al (2020) Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Front Immunol 11:1390. https://doi.org/10.3389/fimmu.2020.01390

Schulthess J, Pandey S, Capitani M et al (2019) The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity 50:432–445.e7. https://doi.org/10.1016/j.immuni.2018.12.018

Sealy L, Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14:115–121. https://doi.org/10.1016/0092-8674(78)90306-9

Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

Swarup V, Ghosh J, Mishra MK, Basu A (2008) Novel strategy for treatment of Japanese encephalitis using arctigenin, a plant lignan. J Antimicrob Chemother 61:679–688. https://doi.org/10.1093/jac/dkm503

Tabeshmehr P, Husnain HK, Salmannejad M et al (2017) Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H2O2. Translation Neurodegen 6:29. https://doi.org/10.1186/s40035-017-0097-1

Tooley KL (2020) Effects of the Human Gut Microbiota on Cognitive Performance, Brain Structure and Function: A Narrative Review. Nutrients 12:3009. https://doi.org/10.3390/nu12103009

Trend S, Leffler J, Jones AP et al (2021) Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis. Sci Rep 11:5244. https://doi.org/10.1038/s41598-021-84881-8

Trompette A, Gollwitzer ES, Pattaroni C et al (2018) Dietary Fiber Confers Protection against Flu by Shaping Ly6c− Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity 48:992–1005.e8. https://doi.org/10.1016/j.immuni.2018.04.022

Vakili K, Fathi M, Yaghoobpoor S, et al (2022) The contribution of gut-brain axis to development of neurological symptoms in COVID-19 recovered patients: A hypothesis and review of literature. Frontiers in Cellular and Infection Microbiology 12

Vijay N, Morris ME (2014) Role of Monocarboxylate Transporters in Drug Delivery to the Brain. Curr Pharm Des 20:1487–1498

Vinolo MAR, Rodrigues HG, Hatanaka E et al (2011) Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J Nutr Biochem 22:849–855. https://doi.org/10.1016/j.jnutbio.2010.07.009

Xu E, Xie Y, Al-Aly Z (2022) Long-term neurologic outcomes of COVID-19. Nat Med 28:2406–2415. https://doi.org/10.1038/s41591-022-02001-z

Yang LL, Millischer V, Rodin S et al (2020) Enteric short-chain fatty acids promote proliferation of human neural progenitor cells. J Neurochem 154:e14928. https://doi.org/10.1111/jnc.14928

Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Inf Secur 80:607–613. https://doi.org/10.1016/j.jinf.2020.03.037

Yoneyama M, Onomoto K, Jogi M et al (2015) Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol 32:48–53. https://doi.org/10.1016/j.coi.2014.12.012

Yoo DY, Kim W, Nam SM et al (2011) Synergistic Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on Increase of Neurogenesis Induced by Pyridoxine and Increase of Neural Proliferation in the Mouse Dentate Gyrus. Neurochem Res 36:1850–1857. https://doi.org/10.1007/s11064-011-0503-5

Zhang B-Z, Chu H, Han S et al (2020) SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30:928–931. https://doi.org/10.1038/s41422-020-0390-x

Zhang L-T, Yao Y-M, Lu J-Q et al (2007) Sodium butyrate prevents lethality of severe sepsis in rats. Shock 27:672–677. https://doi.org/10.1097/SHK.0b013e31802e3f4c

Zheng W, Klammer AM, Naciri JN et al (2020) Patterns of Herpes Simplex Virus 1 Infection in Neural Progenitor Cells. J Virol 94:e00994–e00920. https://doi.org/10.1128/JVI.00994-20