Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case

Anthropocene - Tập 33 - Trang 100275 - 2021
Julia Le Noë1, Karl-Heinz Erb1, Sarah Matej1, Andreas Magerl1, Manan Bhan1, Simone Gingrich1
1Institute of Social Ecology (SEC), Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, Wien, Austria

Tài liệu tham khảo

Agreste, 2019 Aguilera, 2018, A historical perspective on soil organic carbon in Mediterranean cropland (Spain, 1900-2008), Sci. Total Environ., 621, 634, 10.1016/j.scitotenv.2017.11.243 Andrew, 2018, Global CO2 emissions from cement production, Earth Syst. Sci. Data, 10, 195, 10.5194/essd-10-195-2018 Andriulo, 1999, Modelling soil carbon dynamics with various cropping sequences on the rolling pampas, Agronomie., 19, 365, 10.1051/agro:19990504 Arneth, 2019, 77 Bae, 2015, Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park, Landsc. Urban Plan., 136, 57, 10.1016/j.landurbplan.2014.11.015 Barles, 2015, The main characteristics of urban socio-ecological trajectories: Paris (France) from the 18th to 20th century, Ecol. Econ., 118, 177, 10.1016/j.ecolecon.2015.07.027 Basile-Doelsch, 2020, Reviews and syntheses: the mechanisms underlying carbon storage in soil, Biogeosci. Discuss., 17, 5223, 10.5194/bg-17-5223-2020 Beau, 2018, Du nuisible au sauvage, les friches comme espaces de pensée environnementale, 2018, 89 Bolinder, 2007, An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada, Agric. Ecosyst. Environ., 118, 29, 10.1016/j.agee.2006.05.013 BP Statistical Review of World Energy (2017). Retrieved from: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/bp-statistical-review-of-world-energy-2017-full-report.pdf. Burney, 2014, Recent climate and air pollution impacts on Indian agriculture, Proc. Natl. Acad. Sci., 111, 16319, 10.1073/pnas.1317275111 Burney, 2010, Greenhouse gas mitigation by agricultural intensification, Proc. Natl. Acad. Sci., 107, 12052, 10.1073/pnas.0914216107 Canedoli, 2020, Soil organic carbon stock in different urban land uses: high stock evidence in urban parks, Urban Ecosytems., 23, 159, 10.1007/s11252-019-00901-6 Charru, 2017, Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats, Ann. For. Sci., 74, 33, 10.1007/s13595-017-0626-1 Ciais, 2008, Carbon accumulation in European forests, Nat. Geosci., 1, 425, 10.1038/ngeo233 Clivot, 2019, Modeling soil organic carbon evolution in long-term arable experiments with AMG model, Environ. Model. Softw., 118, 99, 10.1016/j.envsoft.2019.04.004 Davies, 2013, Identifying potential sources of variability between vegetation carbon storage estimates for urban areas, Environ. Pollut., 183, 133, 10.1016/j.envpol.2013.06.005 Diaz-Porras, 2014, 110 Years of change in urban tree stocks and associated carbon storage, Ecol. Evol., 4-8, 1413, 10.1002/ece3.1017 Eggleston, 2006, Intergovernmental panel on climate change, national greenhouse gas inventories programme, and Chikyū Kankyō Senryaku Kenkyū Kikan Ellis, 2010, Anthropogenic transformation of the biomes, 1700 to 2000, Glob. Ecol. Biogeogr., 19, 589 Erb, 2008, Industrialization, fossil fuels, and the transformation of land use: an integrated analysis of carbon flows in Austria 1830-2000, J. Ind. Ecol., 12, 686, 10.1111/j.1530-9290.2008.00076.x Erb, 2013, Bias in the attribution of forest carbon sinks, Nat. Clim. Chang., 3, 854, 10.1038/nclimate2004 Erb, 2016, Land management: data availability and process understanding for global change studies, Glob. Change Biol., 23, 512, 10.1111/gcb.13443 Erb, 2018, Unexpectedly large impact on forest management and grazing on global vegetation biomass, Nature, 553, 73, 10.1038/nature25138 Fan, 2017, Harvest index–yield relationship for estimating crop residue in cold continental climates, Field Crops Res., 204, 153, 10.1016/j.fcr.2017.01.014 Fischer-Kowalski, 1998, Society’s metabolism: the intellectual history of material flow analysis, part I, 1860-1970, J. Ind. Ecol., 2, 1, 10.1162/jiec.1998.2.1.61 Fischer-Kowalski, 2007, Conceptualizing, observing and comparing socioecological transitions, 1 Fischer-Kowalski, 2014, A socio-metabolic reading of the anthropocene: modes of subsitence, population size and human impact on Earth, Anthr. Rev., 1, 8 French Ministry for the Environment, 2020 French Ministry for trade, industry, mail and telegraphs, 1895 Friedlingstein, 2019, Global carbon budget 2019, Earth Syst. Sci. Data, 11, 1783, 10.5194/essd-11-1783-2019 Garg, 2006, Volume 2: energy Garnier, 2019, Long-term changes in greenhouse gas emissions from French agriculture (1852-2014): from traditional agriculture to conventional intensive systems, Sci. Total Environ., 660, 1486, 10.1016/j.scitotenv.2019.01.048 Gingrich, 2007, Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000, Reg. Environ. Change, 7, 37, 10.1007/s10113-007-0024-6 Gingrich, 2016, A Forest transition: Austrian carbon budgets 1830–2010, vol. 5 Gingrich, 2019, Hidden emissions of forest transitions: a socio-ecological reading of forest change, Curr. Opin. Environ. Sustain., 38, 14, 10.1016/j.cosust.2019.04.005 González de Molina, 2014, Metabolic transitions: a theory of socioecological transformation, vol. 3 Grassi, 2018, Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks, Nat. Clim. Chang., 8, 914, 10.1038/s41558-018-0283-x Haberl, 2006, From LTER to LTSER: conceptualizing the socioeconomic dimension of long-term socioecological research, Ecol. Soc., 11 Harchaoui, 2018, Energy, nitrogen, and farm surplus transitions in agriculture from historical data modeling. France, 1882–2013, J. Ind. Ecol., 23, 412, 10.1111/jiec.12760 Henders, 2015, Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities, Environ. Res. Lett., 10, 10.1088/1748-9326/10/12/125012 Houghton, 2020, Terrestrial fluxes of carbon in GCP carbon budgets, Glob. Change Biol., 26, 3006, 10.1111/gcb.15050 Houghton, 2017, Global and regional fluxes of carbon from land use and land cover change 1850-2015, Global Biogeochem. Cycles, 31, 456, 10.1002/2016GB005546 Huffman, 2015, Carbon stocks and change from woody biomass on Canada’s cropland between 1990 and 2000, Agric. Ecosyst. Environ., 205, 102, 10.1016/j.agee.2014.10.009 Hurtt, 2020, Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev. Discuss., 1 Hutyra, 2011, Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region, Glob. Chang. Biol., 17, 783, 10.1111/j.1365-2486.2010.02238.x IGN, 2018 Infante-Amate, 2019, Trade, ecologically unequal exchange and colonial legacy: the case of France and its former colonies (1962–2015), Ecol. Econ., 156, 98, 10.1016/j.ecolecon.2018.09.013 IPCC, 2019 Jakob, 2013, Interpreting trade-related CO2 emission transfers, Nat. Clim. Change, 3, 19, 10.1038/nclimate1630 Jepsen, 2015, Transitions in European land-management regimes between 1800 and 2010, Land Use Policy, 49, 53, 10.1016/j.landusepol.2015.07.003 Joimel, 2016, Physico-chemical charasteristics of topsoil for contrasted forest, agricultural, urban and inductrial land uses in France, Sci. Total Environ., 545-546, 40, 10.1016/j.scitotenv.2015.12.035 Kastner, 2011, Tracing distant environmental impacts of agrcultural products from a consumer perspective, Ecol. Econ., 70, 1032, 10.1016/j.ecolecon.2011.01.012 Körner, 2003, Slow in, rapid out--carbon flux studies and kyoto targets, Science, 300, 1242, 10.1126/science.1084460 Krausmann, 2008, Socio-ecological regime transitions in Austria and the United Kingdom, Ecol. Econ., 65, 187, 10.1016/j.ecolecon.2007.06.009 Krausmann, 2008, Socio-ecological regime transitions in Austria and the United Kingdom, J. Ind. Ecol., 12, 637, 10.1111/j.1530-9290.2008.00065.x Krausmann, 2013, Global human appropriation of net primary production doubled in the 20th century, PNAS, 110-25, 10324, 10.1073/pnas.1211349110 Lal, 2016, Beyond COP21: potential and challenges of the “4 per thousand” initiative, J. Soil Water Conserv., 71, 1, 10.2489/jswc.71.1.20A Le Noë, 2016, La place du transport de denrées agricoles dans le cycle biogéochimique de l’azote en France: un aspect de la spécialisation des territoires, Cahiers Agric., 25, 15004, 10.1051/cagri/2016002 Le Noë, 2017, How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the Generalized Representation of Agro-Food System applied at the regional scale in France, Sci. Total Environ., 586, 42, 10.1016/j.scitotenv.2017.02.040 Le Noë, 2018, Long term socio-ecological trajectories of agro-food systems revealed by N and P flows: the case of French regions from 1852 to 2014, Agric. Ecosyst. Environ., 265, 132, 10.1016/j.agee.2018.06.006 Le Noë, 2019, Drivers of long-term carbon dynamics in cropland: a bio-political history (France, 1852-2014), Environ. Sci. Policy, 93, 53, 10.1016/j.envsci.2018.12.027 Le Noë, 2020, Modelling and empirical validation of carbon stock accumulation during the forest transition in France 1850-2015, Glob. Chang. Biol., 00, 1 Levavasseur, 2020, The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matter, Nutr. Cycl. Agroecosystems, 117, 215, 10.1007/s10705-020-10065-x Liski, 2002, Increasing carbon stocks in the forest soils of western Europe, For. Ecol. Manage., 169, 159, 10.1016/S0378-1127(02)00306-7 Lokupitiya, 2006, Agricultural soil greenhouse gas emissions, J. Environ. Qual., 35, 1413, 10.2134/jeq2005.0157 Magalhães, 2019, The Physical Economy of France (1830–2015). The History of a Parasite?, Ecol. Econ., 157, 291, 10.1016/j.ecolecon.2018.12.001 Magerl, 2019, A comprehensive data-based assessment of forest ecosystem carbon stocks in the U.S., 1907-2012, Environ. Res. Lett., 14, 125015, 10.1088/1748-9326/ab5cb6 Meyfroidt, 2016, Approaches and terminology for causal analysis in land systems science, J. Land Use, 11, 501, 10.1080/1747423X.2015.1117530 Minasny, 2017, Soil carbon 4 per mille, Geoderma, 292, 59, 10.1016/j.geoderma.2017.01.002 Morel, 2015, Ecosystems services provided by soils or urban, industrial, traffic, mining and military areas (SUITMAs), J. Soils Sediments, 15, 1659, 10.1007/s11368-014-0926-0 Musel, 2009, Human appropriation of net primary production in the United Kingdom, 1800–2000: PChanges in society’s impact on ecological energy flows during the agrarian–industrial transition, Ecol. Econ., 69, 270, 10.1016/j.ecolecon.2009.08.012 Pellerin, 2019 Perron, 1996 Poeplau, 2016, Estimating root: shoot ratio and soil carbon inputs in temperate grassland with the RothC model, Plant Soil, 407, 293, 10.1007/s11104-016-3017-8 Raciti, 2012, Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks, Ecol. Appl., 22, 1015, 10.1890/11-1250.1 Roe, 2019, Contribution of the land sector to a 1.5 °C world, Nat. Clim. Chang., 9, 817, 10.1038/s41558-019-0591-9 Rutledge, 2011, Estimating long-term world coal production with logit and probit transforms, Int. J. Coal Geol., 85, 23, 10.1016/j.coal.2010.10.012 Saffih-Hdadi, 2008, Modeling consequences of straw residues export on soil organic carbon, Soil Biol. Biochem., 40, 594, 10.1016/j.soilbio.2007.08.022 Song, 2019, A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change, Nat. Ecol. Evol., 3, 1309, 10.1038/s41559-019-0958-3 Vannière, 1984, Tables de production pour les forêts françaises Vasenev, 2018, Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving forces, Land Degrad. Dev., 29, 1607, 10.1002/ldr.2944 Vuichard, 2018, Accounting for Carbon and Nitrogen interactions in the Global Terrestrial Ecosystem Model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production, Geosci. Model. Dev. Discuss., 12, 4751, 10.5194/gmd-12-4751-2019 Wiebe, 2012, Calcultating Energy related CO2 emissions embodied in international trade using a global Input-Outpit model, Econ. Syst. Res., 24-2, 113, 10.1080/09535314.2011.643293 Xu, 2014, A structural decomposition analysis of the emissions embodied in trade, Ecol. Econ., 101, 10, 10.1016/j.ecolecon.2014.02.015