Socio-ecological drivers of long-term ecosystem carbon stock trend: An assessment with the LUCCA model of the French case
Tài liệu tham khảo
Agreste, 2019
Aguilera, 2018, A historical perspective on soil organic carbon in Mediterranean cropland (Spain, 1900-2008), Sci. Total Environ., 621, 634, 10.1016/j.scitotenv.2017.11.243
Andrew, 2018, Global CO2 emissions from cement production, Earth Syst. Sci. Data, 10, 195, 10.5194/essd-10-195-2018
Andriulo, 1999, Modelling soil carbon dynamics with various cropping sequences on the rolling pampas, Agronomie., 19, 365, 10.1051/agro:19990504
Arneth, 2019, 77
Bae, 2015, Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park, Landsc. Urban Plan., 136, 57, 10.1016/j.landurbplan.2014.11.015
Barles, 2015, The main characteristics of urban socio-ecological trajectories: Paris (France) from the 18th to 20th century, Ecol. Econ., 118, 177, 10.1016/j.ecolecon.2015.07.027
Basile-Doelsch, 2020, Reviews and syntheses: the mechanisms underlying carbon storage in soil, Biogeosci. Discuss., 17, 5223, 10.5194/bg-17-5223-2020
Beau, 2018, Du nuisible au sauvage, les friches comme espaces de pensée environnementale, 2018, 89
Bolinder, 2007, An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada, Agric. Ecosyst. Environ., 118, 29, 10.1016/j.agee.2006.05.013
BP Statistical Review of World Energy (2017). Retrieved from: https://www.connaissancedesenergies.org/sites/default/files/pdf-actualites/bp-statistical-review-of-world-energy-2017-full-report.pdf.
Burney, 2014, Recent climate and air pollution impacts on Indian agriculture, Proc. Natl. Acad. Sci., 111, 16319, 10.1073/pnas.1317275111
Burney, 2010, Greenhouse gas mitigation by agricultural intensification, Proc. Natl. Acad. Sci., 107, 12052, 10.1073/pnas.0914216107
Canedoli, 2020, Soil organic carbon stock in different urban land uses: high stock evidence in urban parks, Urban Ecosytems., 23, 159, 10.1007/s11252-019-00901-6
Charru, 2017, Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats, Ann. For. Sci., 74, 33, 10.1007/s13595-017-0626-1
Ciais, 2008, Carbon accumulation in European forests, Nat. Geosci., 1, 425, 10.1038/ngeo233
Clivot, 2019, Modeling soil organic carbon evolution in long-term arable experiments with AMG model, Environ. Model. Softw., 118, 99, 10.1016/j.envsoft.2019.04.004
Davies, 2013, Identifying potential sources of variability between vegetation carbon storage estimates for urban areas, Environ. Pollut., 183, 133, 10.1016/j.envpol.2013.06.005
Diaz-Porras, 2014, 110 Years of change in urban tree stocks and associated carbon storage, Ecol. Evol., 4-8, 1413, 10.1002/ece3.1017
Eggleston, 2006, Intergovernmental panel on climate change, national greenhouse gas inventories programme, and Chikyū Kankyō Senryaku Kenkyū Kikan
Ellis, 2010, Anthropogenic transformation of the biomes, 1700 to 2000, Glob. Ecol. Biogeogr., 19, 589
Erb, 2008, Industrialization, fossil fuels, and the transformation of land use: an integrated analysis of carbon flows in Austria 1830-2000, J. Ind. Ecol., 12, 686, 10.1111/j.1530-9290.2008.00076.x
Erb, 2013, Bias in the attribution of forest carbon sinks, Nat. Clim. Chang., 3, 854, 10.1038/nclimate2004
Erb, 2016, Land management: data availability and process understanding for global change studies, Glob. Change Biol., 23, 512, 10.1111/gcb.13443
Erb, 2018, Unexpectedly large impact on forest management and grazing on global vegetation biomass, Nature, 553, 73, 10.1038/nature25138
Fan, 2017, Harvest index–yield relationship for estimating crop residue in cold continental climates, Field Crops Res., 204, 153, 10.1016/j.fcr.2017.01.014
Fischer-Kowalski, 1998, Society’s metabolism: the intellectual history of material flow analysis, part I, 1860-1970, J. Ind. Ecol., 2, 1, 10.1162/jiec.1998.2.1.61
Fischer-Kowalski, 2007, Conceptualizing, observing and comparing socioecological transitions, 1
Fischer-Kowalski, 2014, A socio-metabolic reading of the anthropocene: modes of subsitence, population size and human impact on Earth, Anthr. Rev., 1, 8
French Ministry for the Environment, 2020
French Ministry for trade, industry, mail and telegraphs, 1895
Friedlingstein, 2019, Global carbon budget 2019, Earth Syst. Sci. Data, 11, 1783, 10.5194/essd-11-1783-2019
Garg, 2006, Volume 2: energy
Garnier, 2019, Long-term changes in greenhouse gas emissions from French agriculture (1852-2014): from traditional agriculture to conventional intensive systems, Sci. Total Environ., 660, 1486, 10.1016/j.scitotenv.2019.01.048
Gingrich, 2007, Long-term dynamics of terrestrial carbon stocks in Austria: a comprehensive assessment of the time period from 1830 to 2000, Reg. Environ. Change, 7, 37, 10.1007/s10113-007-0024-6
Gingrich, 2016, A Forest transition: Austrian carbon budgets 1830–2010, vol. 5
Gingrich, 2019, Hidden emissions of forest transitions: a socio-ecological reading of forest change, Curr. Opin. Environ. Sustain., 38, 14, 10.1016/j.cosust.2019.04.005
González de Molina, 2014, Metabolic transitions: a theory of socioecological transformation, vol. 3
Grassi, 2018, Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks, Nat. Clim. Chang., 8, 914, 10.1038/s41558-018-0283-x
Haberl, 2006, From LTER to LTSER: conceptualizing the socioeconomic dimension of long-term socioecological research, Ecol. Soc., 11
Harchaoui, 2018, Energy, nitrogen, and farm surplus transitions in agriculture from historical data modeling. France, 1882–2013, J. Ind. Ecol., 23, 412, 10.1111/jiec.12760
Henders, 2015, Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities, Environ. Res. Lett., 10, 10.1088/1748-9326/10/12/125012
Houghton, 2020, Terrestrial fluxes of carbon in GCP carbon budgets, Glob. Change Biol., 26, 3006, 10.1111/gcb.15050
Houghton, 2017, Global and regional fluxes of carbon from land use and land cover change 1850-2015, Global Biogeochem. Cycles, 31, 456, 10.1002/2016GB005546
Huffman, 2015, Carbon stocks and change from woody biomass on Canada’s cropland between 1990 and 2000, Agric. Ecosyst. Environ., 205, 102, 10.1016/j.agee.2014.10.009
Hurtt, 2020, Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev. Discuss., 1
Hutyra, 2011, Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region, Glob. Chang. Biol., 17, 783, 10.1111/j.1365-2486.2010.02238.x
IGN, 2018
Infante-Amate, 2019, Trade, ecologically unequal exchange and colonial legacy: the case of France and its former colonies (1962–2015), Ecol. Econ., 156, 98, 10.1016/j.ecolecon.2018.09.013
IPCC, 2019
Jakob, 2013, Interpreting trade-related CO2 emission transfers, Nat. Clim. Change, 3, 19, 10.1038/nclimate1630
Jepsen, 2015, Transitions in European land-management regimes between 1800 and 2010, Land Use Policy, 49, 53, 10.1016/j.landusepol.2015.07.003
Joimel, 2016, Physico-chemical charasteristics of topsoil for contrasted forest, agricultural, urban and inductrial land uses in France, Sci. Total Environ., 545-546, 40, 10.1016/j.scitotenv.2015.12.035
Kastner, 2011, Tracing distant environmental impacts of agrcultural products from a consumer perspective, Ecol. Econ., 70, 1032, 10.1016/j.ecolecon.2011.01.012
Körner, 2003, Slow in, rapid out--carbon flux studies and kyoto targets, Science, 300, 1242, 10.1126/science.1084460
Krausmann, 2008, Socio-ecological regime transitions in Austria and the United Kingdom, Ecol. Econ., 65, 187, 10.1016/j.ecolecon.2007.06.009
Krausmann, 2008, Socio-ecological regime transitions in Austria and the United Kingdom, J. Ind. Ecol., 12, 637, 10.1111/j.1530-9290.2008.00065.x
Krausmann, 2013, Global human appropriation of net primary production doubled in the 20th century, PNAS, 110-25, 10324, 10.1073/pnas.1211349110
Lal, 2016, Beyond COP21: potential and challenges of the “4 per thousand” initiative, J. Soil Water Conserv., 71, 1, 10.2489/jswc.71.1.20A
Le Noë, 2016, La place du transport de denrées agricoles dans le cycle biogéochimique de l’azote en France: un aspect de la spécialisation des territoires, Cahiers Agric., 25, 15004, 10.1051/cagri/2016002
Le Noë, 2017, How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: the Generalized Representation of Agro-Food System applied at the regional scale in France, Sci. Total Environ., 586, 42, 10.1016/j.scitotenv.2017.02.040
Le Noë, 2018, Long term socio-ecological trajectories of agro-food systems revealed by N and P flows: the case of French regions from 1852 to 2014, Agric. Ecosyst. Environ., 265, 132, 10.1016/j.agee.2018.06.006
Le Noë, 2019, Drivers of long-term carbon dynamics in cropland: a bio-political history (France, 1852-2014), Environ. Sci. Policy, 93, 53, 10.1016/j.envsci.2018.12.027
Le Noë, 2020, Modelling and empirical validation of carbon stock accumulation during the forest transition in France 1850-2015, Glob. Chang. Biol., 00, 1
Levavasseur, 2020, The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous organic matter, Nutr. Cycl. Agroecosystems, 117, 215, 10.1007/s10705-020-10065-x
Liski, 2002, Increasing carbon stocks in the forest soils of western Europe, For. Ecol. Manage., 169, 159, 10.1016/S0378-1127(02)00306-7
Lokupitiya, 2006, Agricultural soil greenhouse gas emissions, J. Environ. Qual., 35, 1413, 10.2134/jeq2005.0157
Magalhães, 2019, The Physical Economy of France (1830–2015). The History of a Parasite?, Ecol. Econ., 157, 291, 10.1016/j.ecolecon.2018.12.001
Magerl, 2019, A comprehensive data-based assessment of forest ecosystem carbon stocks in the U.S., 1907-2012, Environ. Res. Lett., 14, 125015, 10.1088/1748-9326/ab5cb6
Meyfroidt, 2016, Approaches and terminology for causal analysis in land systems science, J. Land Use, 11, 501, 10.1080/1747423X.2015.1117530
Minasny, 2017, Soil carbon 4 per mille, Geoderma, 292, 59, 10.1016/j.geoderma.2017.01.002
Morel, 2015, Ecosystems services provided by soils or urban, industrial, traffic, mining and military areas (SUITMAs), J. Soils Sediments, 15, 1659, 10.1007/s11368-014-0926-0
Musel, 2009, Human appropriation of net primary production in the United Kingdom, 1800–2000: PChanges in society’s impact on ecological energy flows during the agrarian–industrial transition, Ecol. Econ., 69, 270, 10.1016/j.ecolecon.2009.08.012
Pellerin, 2019
Perron, 1996
Poeplau, 2016, Estimating root: shoot ratio and soil carbon inputs in temperate grassland with the RothC model, Plant Soil, 407, 293, 10.1007/s11104-016-3017-8
Raciti, 2012, Inconsistent definitions of “urban” result in different conclusions about the size of urban carbon and nitrogen stocks, Ecol. Appl., 22, 1015, 10.1890/11-1250.1
Roe, 2019, Contribution of the land sector to a 1.5 °C world, Nat. Clim. Chang., 9, 817, 10.1038/s41558-019-0591-9
Rutledge, 2011, Estimating long-term world coal production with logit and probit transforms, Int. J. Coal Geol., 85, 23, 10.1016/j.coal.2010.10.012
Saffih-Hdadi, 2008, Modeling consequences of straw residues export on soil organic carbon, Soil Biol. Biochem., 40, 594, 10.1016/j.soilbio.2007.08.022
Song, 2019, A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change, Nat. Ecol. Evol., 3, 1309, 10.1038/s41559-019-0958-3
Vannière, 1984, Tables de production pour les forêts françaises
Vasenev, 2018, Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving forces, Land Degrad. Dev., 29, 1607, 10.1002/ldr.2944
Vuichard, 2018, Accounting for Carbon and Nitrogen interactions in the Global Terrestrial Ecosystem Model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production, Geosci. Model. Dev. Discuss., 12, 4751, 10.5194/gmd-12-4751-2019
Wiebe, 2012, Calcultating Energy related CO2 emissions embodied in international trade using a global Input-Outpit model, Econ. Syst. Res., 24-2, 113, 10.1080/09535314.2011.643293
Xu, 2014, A structural decomposition analysis of the emissions embodied in trade, Ecol. Econ., 101, 10, 10.1016/j.ecolecon.2014.02.015