Societal Preferences for Meningococcal B Vaccination in Children: A Discrete Choice Experiment in Spain

Springer Science and Business Media LLC - Tập 12 - Trang 157-175 - 2022
Federico Martinón-Torres1,2,3, Ángel Gil de Miguel4, Jesús Ruiz-Contreras5,6, Laura A. Vallejo-Aparicio7, Andrea García7, María C. Gonzalez-Inchausti7, Eduardo de Gomensoro7, Zeki Kocaata8, Clara Gabás-Rivera9, Marta Comellas9, Miriam Prades9, Luis Lizán9,10
1Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
2Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
3Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
4Department of Preventive Medicine and Public Health, Universidad Rey Juan Carlos, Madrid, Spain
5Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain
6Department of Pediatrics, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
7GSK, Madrid, Spain
8GSK, Wavre, Belgium
9Outcomes’10, Castellón, Spain
10Department of Medicine, Universidad Jaime I, Castellón, Spain

Tóm tắt

Immunization is the most effective strategy for the prevention of invasive meningococcal disease caused by Neisseria meningitidis serogroup B (MenB); however, parents need to weigh the risk–benefit and financial impact of immunizing their children against MenB in the absence of a national immunization program (NIP). This study aimed to explore societal preferences (of parents and pediatricians) regarding the attributes of a MenB vaccine in Spain. A discrete choice experiment (DCE) based on cross-sectional surveys was carried out to determine preferences. A literature review and scientific committee determined the six attributes related to the MenB vaccine included in the DCE: vaccination age, cost, duration, percentage of protection, adverse events probability, and expert/authority recommendation. Data were analyzed using a mixed logit model. Relative importance (RI) of attributes was calculated and compared between parents and pediatricians. A total of 278 parents [55.8% female, mean age 40.4 (standard deviation, SD 7.3) years] and 200 pediatricians [73.0% female, mean age 45.8 (SD 12.9) years] answered the DCE. For parents, the highest RI was attributed to vaccine cost, expert/authority recommendation, and percentage of protection (26.4%, 26.1%, and 22.9%, respectively), while for pediatricians the highest RI was assigned to percentage of protection, expert/authority recommendation, and vaccination age (27.2%, 23.7%, and 22.6%, respectively). Significant differences between parents and pediatricians were found in the RI assigned to all attributes (p < 0.001), except for vaccine recommendation. In the decision regarding MenB vaccination, cost was a driver in parental decision-making but had a low RI for pediatricians and, conversely, vaccination age was highly valued by pediatricians but was the attribute with least importance for parents. Despite these differences, expert/authority recommendation and percentage of protection were essential criteria for both groups. These results provide relevant information about MenB vaccination, highlighting the importance of considering societal preferences for NIP inclusion.

Tài liệu tham khảo

Rappuoli R, Pizza M, Masignani V, Vadivelu K. Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Expert Rev Vaccines. 2018;17(12):1111–21. https://doi.org/10.1080/14760584.2018.1547637. Moreno-Pérez D, Álvarez García FJ, Arístegui Fernández J, et al. Vacunación frente al meningococo B. Posicionamiento del Comité Asesor de Vacunas de la Asociación Española de Pediatría. Anales de Pediatría. 2015;82(3):198.e1–9. https://doi.org/10.1016/j.anpedi.2014.09.004. Ladhani SN, Flood JS, Ramsay ME, et al. Invasive meningococcal disease in England and Wales: implications for the introduction of new vaccines. Vaccine. 2012;30(24):3710–6. https://doi.org/10.1016/j.vaccine.2012.03.011. Shen J, Begum N, Ruiz-Garcia Y, Martinon-Torres F, Bekkat-Berkani R, Meszaros K. Range of invasive meningococcal disease sequelae and health economic application – a systematic and clinical review. BMC Public Health. 2022;22(1):1078. https://doi.org/10.1186/s12889-022-13342-2. European Centre for Disease Prevention and Control. Surveillance of invasive bacterial diseases in Europe, 2012. Stockholm: ECDC; 2015. Stefanizzi P, Bianchi FP, Spinelli G, et al. Postmarketing surveillance of adverse events following meningococcal B vaccination: data from Apulia Region, 2014–19. Hum Vaccin Immunother. 2022;18(1):1–6. https://doi.org/10.1080/21645515.2021.1963171. Delgado Rodríguez M, Dominguez Garcia A. Pros and cons of vaccination against disease caused by serogroup B meningococcal disease. Med Clín (Engl Ed). 2018;150(3):109–13. https://doi.org/10.1016/j.medcle.2017.07.039. Taha MK, Martinon-Torres F, Kollges R, et al. Equity in vaccination policies to overcome social deprivation as a risk factor for invasive meningococcal disease. Expert Rev Vaccines. 2022;21(5):659–74. https://doi.org/10.1080/14760584.2022.2052048. (CDC) ECfDPaC. Meningococcal disease: recommended vaccinations. 2022. https://vaccine-schedule.ecdc.europa.eu/Scheduler/ByDisease?SelectedDiseaseId=48&SelectedCountryIdByDisease=-1. Accessed 28 July 2022. (NHS) UKNHS. NHS vaccinations and when to have them. 2022. https://www.nhs.uk/conditions/vaccinations/nhs-vaccinations-and-when-to-have-them/ Accessed 28 July 2022. Xunta de Galicia. Rueda destaca que la implantación de tres nuevas vacunas sitúa a Galicia como la Comunidad con el calendario de vacunación infantil más completo de España. 2022. https://www.xunta.gal/notas-de-prensa/-/nova/68990/rueda-destaca-que-implantacion-tres-nuevas-vacunas-situa-galicia-como-comunidad. Accessed 04 July 2022. Marshall HS, Chen G, Clarke M, Ratcliffe J. Adolescent, parent and societal preferences and willingness to pay for meningococcal B vaccine: a discrete choice experiment. Vaccine. 2016;34(5):671–7. https://doi.org/10.1016/j.vaccine.2015.11.075. Bridges JFP, Hauber AB, Marshall D, et al. Conjoint analysis applications in health–a checklist: a report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health. 2011;14(4):403–13. https://doi.org/10.1016/j.jval.2010.11.013. Michaels-Igbokwe C, MacDonald S, Currie GR. Individual preferences for child and adolescent vaccine attributes: a systematic review of the stated preference literature. The Patient. 2017;10(6):687–700. https://doi.org/10.1007/s40271-017-0244-x. Poulos C, Standaert B, Sloesen B, Stryjewska I, Janitsary A, Hauber B. Preferences for vaccines against children’s diarrheal illness among mothers in Poland and Hungary. Vaccine. 2018;36(40):6022–9. https://doi.org/10.1016/j.vaccine.2018.08.001. Verelst F, Willem L, Kessels R, Beutels P. Individual decisions to vaccinate one’s child or oneself: a discrete choice experiment rejecting free-riding motives. Soc Sci Med. 2018;207:106–16. https://doi.org/10.1016/j.socscimed.2018.04.038. de Bekker-Grob EW, Veldwijk J, Jonker M, et al. The impact of vaccination and patient characteristics on influenza vaccination uptake of elderly people: a discrete choice experiment. Vaccine. 2018;36(11):1467–76. https://doi.org/10.1016/j.vaccine.2018.01.054. Diks ME, Hiligsmann M, van der Putten IM. Vaccine preferences driving vaccine-decision making of different target groups: a systematic review of choice-based experiments. BMC Infect Dis. 2021;21(1):879. https://doi.org/10.1186/s12879-021-06398-9. Gong T, Chen G, Liu P, et al. Parental vaccine preferences for their children in China: a discrete choice experiment. Vaccines (Basel). 2020;8(4):687. https://doi.org/10.3390/vaccines8040687. Shanahan M, Larance B, Nielsen S, Cohen M, Schaffer M, Campbell G. A protocol for a discrete choice experiment: understanding patient medicine preferences for managing chronic non-cancer pain. BMJ Open. 2019;9:e027153. https://doi.org/10.1136/bmjopen-2018-027153. de Bekker-Grob EW, Hol L, Donkers B, van Dam L, Habbema JDF, et al. Labeled versus unlabeled discrete choice experiments in health economics: an application to colorectal cancer screening. Value Health. 2010;13(2):315–23. https://doi.org/10.1111/j.1524-4733.2009.00670.x. Orme B. Sample size issues for conjoint analysis. In: Orme B, editor. Getting started with conjoint analysis: strategies for product design and pricing research. 2nd ed. Madison: Research Publishers LLC; 2010. p. 57–66. Erdem S, Thompson C. Prioritising health service innovation investments using public preferences a discrete choice experiment. BMC Health Serv Res. 2014;14:360. Reed Johnson F, Lancsar E, Marshall D, et al. Constructing experimental designs for discrete-choice experiments: report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Health. 2013;16(1):3–13. https://doi.org/10.1016/j.jval.2012.08.2223. Hauber AB, Gonzalez JM, Groothuis-Oudshoorn CGM, et al. Statistical methods for the analysis of discrete choice experiments: a report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Health. 2016;19(4):300–15. https://doi.org/10.1016/j.jval.2016.04.004. Mattmann M, Logar I, Brouwer R. Choice certainty, consistency, and monotonicity in discrete choice experiments. J Environ Econ Policy. 2019;8:109–27. https://doi.org/10.1080/21606544.2018.1515118. Hole AR, Kolstad JR. Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment. Empir Econ. 2012;42:445–69. Spanish Ministry of Health. Calendario de vacunación a lo largo de toda la vida 2021. 2021. https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/vacunaciones/calendario-y-coberturas/home.htm. Accessed Apr 2021. Carmo MCD, Perez A, Vallejo-Aparicio LA, García A, Rodriguez R, Gonzalez-Inchausti MC, De Gomensoro E, Tafalla M. The relationship between income per capita and access to meningococcal serogroup B vaccination in Spain: an ecological correlation study. Rev Esp Econ Salud. 2022;17(2):35–46. Taylor KA, Stocks N, Marshall HS. The missing link: family physician perspectives on barriers and enablers to prescribing a new meningococcal B vaccine and other recommended, non-government funded vaccines. Vaccine. 2014;32(33):4214–9. https://doi.org/10.1016/j.vaccine.2014.04.046. Aibar-Remon C, Gonzalez-Hinjos M, Loris-Pablo C. Can you buy prevention? Gac Sanit. 2017;31(3):276. https://doi.org/10.1016/j.gaceta.2016.11.004. Determann DKI, Determann D, Korfage IJ, Fagerlin A, Steyerberg EW, Bliemer MC, Voeten HA, Richardus JH, Lambooij MS, de Bekker-Grob EW. Public preferences for vaccination programmes during pandemics caused by pathogens transmitted through respiratory droplets – a discrete choice experiment in four European countries, 2013. Euro Surveill. 2016;21. https://doi.org/10.2807/1560-7917.ES.2016.21.22.30247. Manthiram K, Blood EA, Kuppuswamy V, et al. Predictors of optional immunization uptake in an urban south Indian population. Vaccine. 2014;32(27):3417–23. https://doi.org/10.1016/j.vaccine.2014.04.012. Marshall H, Ryan P, Roberton D, Beilby J. Varicella immunisation practice: implications for provision of a recommended, non-funded vaccine. J Paediatr Child Health. 2009;45(5):297–303. https://doi.org/10.1111/j.1440-1754.2009.01494.x. Sun X, Wagner AL, Ji J, Huang Z, Zikmund-Fisher BJ, Boulton ML, Ren J, Prosser LA. A conjoint analysis of stated vaccine preferences in Shanghai, China. Vaccine. 2020;38(6):1520–5. Martinón-Torres F. Do we really want to end meningococcal disease (and current inequity)? Anales de Pediatría. 2022;97(3):224–6. https://doi.org/10.1016/j.anpedi.2022.04.018. Brown DS, Reed Johnson F, Poulos C, Messonnier ML. Mothers’ preferences and willingness to pay for vaccinating daughters against human papillomavirus. Vaccine. 2010;28(7):1702–8. Flood EM, Ryan KJ, Rousculp MD, et al. Parent preferences for pediatric influenza vaccine attributes. Clin Pediatr (Phila). 2011;50(4):338–47. https://doi.org/10.1177/0009922810391247. Hofman R, de Bekker-Grob EW, Raat H, Helmerhorst TJM, van Ballegooijen M, Korfage IJ. Parents’ preferences for vaccinating daughters against human papillomavirus in the Netherlands: a discrete choice experiment. BMC Public Health. 2014;14:454. Ladhani SN, Andrews N, Parikh SR, et al. Vaccination of infants with meningococcal group B vaccine (4CMenB) in England. N Engl J Med. 2020;382(4):309–17. https://doi.org/10.1056/NEJMoa1901229. Martinon-Torres F, Nolan T, Toneatto D, Banzhoff A. Persistence of the immune response after 4CMenB vaccination, and the response to an additional booster dose in infants, children, adolescents, and young adults. Hum Vaccin Immunother. 2019;15(12):2940–51. https://doi.org/10.1080/21645515.2019.1627159. Ladhani SN, Ramsay M, Borrow R, Riordan A, Watson JM, Pollard AJ. Enter B and W: two new meningococcal vaccine programmes launched. Arch Dis Child. 2016;101(1):91–5. Poulos C, Reed Johnson F, Krishnarajah G, Anonychuk A, Misurski D. Pediatricians’ preferences for infant meningococcal vaccination. Value Health. 2015;18(1):67–77. https://doi.org/10.1016/j.jval.2014.10.010. Viney R, Lancsar E, Louviere J. Discrete choice experiments to measure consumer preferences for health and healthcare. Expert Rev Pharmacoecon Outcomes Res. 2002;2(4):319–26. https://doi.org/10.1586/14737167.2.4.319. Marshall D, Bridges JFP, Hauber B, et al. Conjoint analysis applications in health - how are studies being designed and reported? An update on current practice in the published literature between 2005 and 2008. The Patient. 2010;3(4):249–56. https://doi.org/10.2165/11539650-000000000-00000.