Social vulnerability and COVID-19 in Maringá, Brazil

Spatial Information Research - Tập 31 - Trang 51-59 - 2022
Matheus Pereira Libório1, Oseias da Silva Martinuci2, Patrícia Bernardes1, Natália Cristina Alves Caetano Chaves Krohling1, Guilherme Castro1, Henrique Leonardo Guerra1, Eduardo Alcantara Ribeiro3, Udelysses Janete Veltrini Fonzar4, Ícaro da Costa Francisco2
1Pontifical Catholic University of Minas Gerais, Belo Horizonte, Brazil
2State University of Maringa, Maringá, Brazil
3Health secretariat of Maringá, Maringá, Brazil
4Department of Medicine, Unicesumar, Maringá, Brazil

Tóm tắt

This research explores the relationship between COVID-19 and social vulnerability on an intra-urban scale. For this, two composite indicators of social vulnerability have been constructed. The composite indicator constructed by the Benefit-of-the-Doubt considers spatial heterogeneity. It weakly captures the conceptually most significant individual indicator of social vulnerability (R=-0.39), as it overestimates the above-average performance sub-indicators. The composite indicator constructed by the Principal Component Analysis considers that the sub-indicators have the same weights in different census tracts, resulting in a highly consistent composite indicator as a multidimensional phenomenon concept (R=-0.93). These findings allow reaching four conclusions. First, the direction and strength of correlations associated with COVID-19 are sensitive to the method employed to construct the composite indicator and not just the geographic scale and space. Second, Medium and High social vulnerability census tracts concentrate 97% of the population but only 93% of COVID-19 cases and deaths. Third, people living in census tracts of None and Low social vulnerability are 3.87 and 2.13 times more likely to be infected or die from COVID-19. Fourth, policies to combat COVID-19 in the study area should prioritize older populations regardless of their social conditions.

Tài liệu tham khảo

Fatima, M., O’Keefe, K. J., Wei, W., Arshad, S., & Gruebner, O. (2021). Geospatial analysis of COVID-19: A scoping review. International Journal of Environmental Research and Public Health, 18(5), 2336 Azarpazhooh, M. R., Morovatdar, N., Avan, A., Phan, T. G., Divani, A. A., Yassi, N., & Di Napoli, M. (2020). COVID-19 pandemic and burden of non-communicable diseases: an ecological study on data of 185 countries. Journal of Stroke and Cerebrovascular Diseases, 29(9), 105089 Valev, D. (2020). Relationships of total COVID-19 cases and deaths with ten demographic, economic and social indicators. medRxiv Libório, M. P., Ekel, P. Y., de Abreu, J. F., & Laudares, S. (2021). Factors that most expose countries to COVID-19: a composite indicators-based approach. GeoJournal, 1–15 Li, W. X. (2021). Worldwide inverse correlation between Bacille Calmette–Guérin (BCG) immunization and COVID-19 mortality. Infection, 49(3), 463–473 Benita, F., & asca-Sanchez, F. (2021). The main factors influencing COVID-19 spread and deaths in Mexico: A comparison between Phases I and II.Applied Geography,102523 Khazanchi, R., Beiter, E. R., Gondi, S., Beckman, A. L., Bilinski, A., & Ganguli, I. (2020). County-level association of social vulnerability with COVID-19 cases and deaths in the USA. Journal of general internal medicine, 35(9), 2784–2787 Karaye, I. M., & Horney, J. A. (2020). The impact of social vulnerability on COVID-19 in the US: an analysis of spatially varying relationships. American journal of preventive medicine, 59(3), 317–325 Sung, B. (2021). A spatial analysis of the association between social vulnerability and the cumulative number of confirmed deaths from COVID-19 in United States counties through November 14, 2020. Osong Public Health and Research Perspectives, 12(3), 149–157. doi: https://doi.org/10.24171/j.phrp.2020.0372 Paez, A., Lopez, F. A., Menezes, T., Cavalcanti, R., & Pitta, M. G. D. R. (2020). A spatio-temporal analysis of the environmental correlates of COVID‐19 incidence in Spain. Geographical analysis, 53(3), 397–421. Doi: https://doi.org/10.1111/gean.12241 Kalla, M. I., Lahmar, B., Geullouh, S., & Kalla, M. (2021). Health geo-governance to assess the vulnerability of Batna, Algeria to COVID-19: the role of GIS in the fight against a pandemic. GeoJournal, 1–14. Doi: https://doi.org/10.1007/s10708-021-10449-8 Henao-Cespedes, V., Garcés-Gómez, Y. A., Ruggeri, S., & Henao-Cespedes, T. M. (2021). Relationship analysis between the spread of COVID-19 and the multidimensional poverty index in the city of Manizales, Colombia. The Egyptian Journal of Remote Sensing and Space Science. doi: https://doi.org/10.1016/j.ejrs.2021.04.002 Biggs, E. N., Maloney, P. M., Rung, A. L., Peters, E. S., & Robinson, W. T. (2021). The relationship between social vulnerability and COVID-19 incidence among louisiana census tracts. Frontiers in Public Health, 8, 1048 Tavares, F. F., & Betti, G. (2021). The pandemic of poverty, vulnerability, and COVID-19: evidence from a fuzzy multidimensional analysis of deprivations in Brazil. World Development, 139, 105307 The Lancet Global Health, 9(6), E782-E792 Souza, C. D. F., Machado, M. F., & do Carmo, R. F. (2020). Human development, social vulnerability and COVID-19 in Brazil: a study of the social determinants of health. Infectious Diseases of Poverty, 9(1), 1–10 Baggio, J. A. O., Machado, M. F., Carmo, D., Armstrong, R. F. C., Dos Santos, A., A. D., & De Souza, C. D. F. (2021). COVID-19 in Brazil: spatial risk, social vulnerability, human development, clinical manifestations and predictors of mortality–a retrospective study with data from 59 695 individuals. Epidemiology & Infection, 149, doi:https://doi.org/10.1017/S0950268821000935 Souza, C. D. F., Carmo, R. F., & Machado, M. F. (2020). The burden of COVID-19 in Brazil is greater in areas with high social deprivation. Journal of Travel Medicine, 27(7), 1–3 Viezzer, J., & Biondi, D. (2021). The influence of urban, socio-economic, and eco-environmental aspects on COVID-19 cases, deaths and mortality: A multi-city case in the Atlantic Forest, Brazil. Sustainable Cities and Society, 69, 102859 Kong, J. D., Tekwa, E. W., & Gignoux-Wolfsohn, S. A. (2021). Social, economic, and environmental factors influencing the basic reproduction number of COVID-19 across countries.PloS one, 16(6), e0252373 Castro, R. R., Santos, R. S. C., Sousa, G. J. B., Pinheiro, Y. T., Martins, R. R. I. M., Pereira, M. L. D., & Silva, R. A. R. (2021). Spatial dynamics of the COVID-19 pandemic in Brazil. Epidemiology & Infection, 149 Souza, C. M. M., Mello, B. J., Florit, L. F., Ramalho, Â. M. C., de Moraes Souza, Y. M., Jeremias, J. T. F., & de Aguiar, P. D. (2021). Social environmental vulnerability approach on the COVID-19 epoch: a case study in Blumenau (SC), Brazil. Research Society and Development, 10(10), e161101018739–e161101018739 Souza, A. P. G. D., Mota, C. M. D. M., Rosa, A. G. F., Figueiredo, C. J. J. D., & Candeias, A. L. B. (2022). A spatial-temporal analysis at the early stages of the COVID-19 pandemic and its determinants: The case of Recife neighborhoods, Brazil. PloS one, 17(5), e0268538 Nardo, M., Saisana, M., Saltelli, A., & Tarantola, S. (2005). Tools for composite indicators building. European Comission Ispra, 15(1), 19–20 Mazziotta, M., & Pareto, A. (2017). Synthesis of indicators: The composite indicators approach. Complexity in society: From indicators construction to their synthesis (pp. 159–191). Cham: Springer Mazziotta, M., & Pareto, A. (2019). Use and misuse of PCA for measuring well-being. Social Indicators Research, 142(2), 451–476 El Gibari, S., Gómez, T., & Ruiz, F. (2019). Building composite indicators using multicriteria methods: a review. Journal of Business Economics, 89(1), 1–24 Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social indicators research, 141(1), 61–94 Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(2), 307–323 Libório, M. P., Martinuci, O. D. S., Machado, A. M. C., Hadad, R. M., Bernardes, P., & Camacho, V. A. L. (2021). Adequacy and Consistency of an Intraurban Inequality Indicator Constructed through Principal Component Analysis. The Professional Geographer, 73(2), 282–296 Dialga, I., & Giang, L. T. H. (2017). Highlighting methodological limitations in the steps of composite indicators construction. Social Indicators Research, 131(2), 441–465 IBGE (2021). Cidades. Brasil Paraná Maringá. Extracted on December 14, 2021, from: https://cidades.ibge.gov.br/brasil/pr/maringa/panorama IBGE (2010). Censo Demográfico. Extracted on December 14, 2021, from: https://censo2010.ibge.gov.br/resultados.html Eurostat (2019). European Statistical: Recovery Dashboard. Extracted on December 14, 2021, from: https://ec.europa.eu/eurostat Guerriero, I. C. Z. (2016). Resolução nº 510 de 7 de abril de 2016 que trata das especificidades éticas das pesquisas nas ciências humanas e sociais e de outras que utilizam metodologias próprias dessas áreas. Ciência & Saúde Coletiva, 21, 2619–2629 Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202 Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An introduction to ‘benefit of the doubt’composite indicators. Social Indicators Research, 82(1), 111–145 Zanella, A., Camanho, A. S., & Dias, T. G. (2015). Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. European Journal of Operational Research, 245(2), 517–530 Arretche, M. (2018). Paths of inequality in Brazil: a half-century of changes. Springer Libório, M. P., Ekel, P. Y., Martinuci, O. D. S., Figueiredo, L. R., Hadad, R. M., Lyrio, R. D. M., & Bernardes, P. (2022). Fuzzy set based intra-urban inequality indicator. Quality & Quantity, 56(2), 667–687