Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quan hệ xã hội, tính đồng nghiệp và tính hướng nội–hướng ngoại để tạo ra mạng phức tạp
Tóm tắt
Nhiều hệ thống liên kết với nhau, đặc biệt là các tương tác xã hội, có thể được mô hình hóa dưới dạng mạng. Những mạng này thường thể hiện các đặc tính chung như hệ số phân cụm cao, chiều dài đường đi trung bình thấp và phân phối bậc theo quy luật lũy thừa. Các mạng có những đặc tính này được gọi là mạng nhỏ thế giới và tự do quy mô hay đơn giản là mạng phức tạp. Sự quan tâm gần đây đến mạng phức tạp đã xúc tác cho sự phát triển của các mô hình thuật toán nhằm tạo ra những mạng này một cách nhân tạo. Thường thì các thuật toán này giới thiệu các thuộc tính mạng trong mô hình mà không quan tâm đến sự diễn giải xã hội, dẫn đến các mạng về mặt thống kê tương tự nhưng cấu trúc khác với các mạng trong thế giới thực. Trong bài viết này, chúng tôi tập trung vào mạng xã hội và áp dụng các khái niệm về quan hệ xã hội, tính đồng nghiệp và tính hướng nội-hướng ngoại để phát triển một mô hình cho mạng xã hội với các thuộc tính nhỏ thế giới và tự do quy mô. Chúng tôi khẳng định rằng mô hình được đề xuất tạo ra các mạng có cấu trúc tương tự như các mạng xã hội trong thế giới thực.
Từ khóa
#Mạng xã hội #quan hệ xã hội #tính đồng nghiệp #tính hướng ngoại hướng nội #mạng phức tạpTài liệu tham khảo
Auber D (2003) Tulip—a huge graph visualization framework. In: Mutzel P, Jünger M (eds) Graph drawing software, mathematics and visualization series. Springer, Berlin
Badham J, Stocker R (2010) A spatial approach to network generation for three properties: degree distribution, clustering coefficient and degree assortativity. J Artif Soc Soc Simul 13(1):11
Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
Boguñá M, Pastor-Satorras R, Díaz-Guilera A, Arenas A (2004) Models of social networks based on social distance attachment. Phys Rev E 70(5):056122
Bollobás B, Riordan OM (2002) Mathematical results on scale-free random graphs. In: Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi:10.1002/3527602755.ch1
Bollt EM, ben Avraham D (2004) What is special about diffusion on scale-free nets? New J Phys 7:26
Bourqui R, Zaidi F, Gilbert F, Sharan U, Simonetto P (2008) Vast 2008 challenge: social network dynamics using cell phone call patterns. In: IEEE symposium on visual analytics science and technology, 2008
Burt RS (2005) Brokerage and closure. Oxford University Press, Oxford
Cannataro M, Guzzi PH, Veltri P (2010) Protein-to-protein interactions: technologies, databases, and algorithms. ACM Comput Surv 43:1:1–1:36
Catanzaro M, Caldarelli G, Pietronero L (2004) Assortative model for social networks. Phys Rev E (Statistical, Nonlinear, and Soft Matter Physics) 70(3):1–4
Condon A, Karp RM (1999) Algorithms for graph partitioning on the planted partition model. Random Struct Algorithms 18(2):116–140
de Almeida ML, Mendes GA, Viswanathan GM, da Silva LR (2013) Scale-free homophilic network. Europ Phys J B 86(2):1–6
Dorogovtsev S, Mendes J (2000) Exactly solvable small-world network. Europ Phys Lett 50(1):1–7
Dorogovtsev SN, Mendes JFF (2000) Evolution of networks with aging of sites. Phys Rev E 62(2):1842–1845
Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187
Ducruet C, Zaidi F (2012) Maritime constellations: a complex network approach to shipping and ports. Maritime Policy Manag 39(2):151–168
Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174
Frank O, Strauss D (1986) Markov graphs. J Am Stat Assoc 81(395):832–842
Fu P, Liao, K (2006) An evolving scale-free network with large clustering coefficient. In ICARCV IEEE, pp 1–4
Geng X, Wang Y (2009) Degree correlations in citation networks model with aging. Europhys Lett 88(3):38002
Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM (2010) A survey of statistical network models. Found Trends Mach Learn 2(2):129–233
Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380
Guillaume J-L, Latapy M (2006) Bipartite graphs as models of complex networks. Phys A Stat Mech Appl 371(2):795–813
Guimera R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Nat Acad Sci USA 102(22):7794–7799
Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering. Phys Rev E 65:026107
Hussain OA, Anwar Z, Saleem S, Zaidi F (2013) Empirical analysis of seed selection criterion in influence mining for different classes of networks. In: Cloud and green computing (CGC), 2013 third international conference on IEEE, pp 348–353
Jackson MO (2005) A survey of network formation models: stability and efficiency. Cambridge University Press, Cambridge
Jung CJ (1921) Psychologischen typen, volume Translation H.G. Baynes, 1923. Rascher Verlag, Zurich
Kasturirangan R (1999) Multiple scales in small-world networks. In Brain and Cognitive Science Department, MIT
Klemm K, Eguiluz VM (2002) Growing scale-free networks with small world behavior. Phys Rev E 65:057102
Krackhardt D (1992) The strength of strong ties: the importance of philos in networks and organization. In: Nohria N, Eccles RG (eds) Networks and organizations. Harvard Business School Press, Boston
Krivitsky PN, Handcock MS, Raftery AE, Hoff PD (2009) Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Soc Netw 31(3):204–213
Kurant M, Gjoka M, Butts CT, Markopoulou (2011) Walking on a graph with a magnifying glass: stratified sampling via weighted random walks. In: Proceedings of the ACM SIGMETRICS joint international conference on measurement and modeling of computer systems, pp 281–292. ACM
Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys Rev E 80(1):016118
Lewis K, Kaufman J, Gonzalez M, Wimmer A, Christakis N (2008) Tastes, ties, and time: a new social network dataset using facebook.com. Soc Netw 30(4):330–342
Liu J-G, Dang Y-Z, Wang Z (2005) Multistage random growing small-world networks with power-law degree distribution. Chin Phys Lett 3(3):746
Moriano P, Finke J (2013) On the formation of structure in growing networks. arXiv preprint arXiv:1301.4192
Newman MEJ (2001) Scientific collaboration networks. I. Network construction and fundamental results. Phys Rev E 64(1):016131. doi:10.1103/PhysRevE.64.016131
Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett, pp 89–20
Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104
Newman MEJ, Watts DJ, Strogatz SH (2002) Random graph models of social networks. Proc Natl Acad Sci USA 99(Suppl 1):2566–2572
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167
Pan Z, Li X, Wang X (2006) Generalized local-world models for weighted networks. Phys Rev E 73(5):056109
Pasta MQ, Jan Z, Sallaberry A, Zaidi F (2013) Tunable and growing network generation model with community structures. In: social computing and applications, 2013 third international conference on, pp 233–240
Pasta MQ, Zaidi F, Rozenblat C (2014) Generating online social networks based on socio-demographic attributes. J Complex Netw 2(4):475–494
Rapoport A (1957) Contribution to the theory of random and biased nets. Bull Math Biophys 19:257–277
Rapoport A, Horvath WJ (1961) A study of a large sociogram. Behav Sci 6(4):279–291
Robins G, Pattison P, Kalish Y, Lusher D (2007) An introduction to exponential random graph (p) models for social networks. Soc Net 29(2):173–191
Sallaberry A, Zaidi F, Melançon G (2013) Model for generating artificial social networks having community structures with small-world and scale-free properties. Soc Netw Anal Min 3:597–609
Schnettler S (2009) A structured overview of 50 years of small-world research. Soc Netw 31(3):165–178
Scott JP (2000) Social network analysis: a handbook. SAGE Publications, London
Scott J (2011) Social network analysis: developments, advances, and prospects. Soc Net Anal Min 1:21–26
Simmel G, Wolff KH (1950) The sociology of Georg Simmel / translated and edited with an introduction by Kurt H. Wolff. Free Press, Glencoe Ill
Snijders TA, Pattison PE, Robins GL, Handcock MS (2006) New specifications for exponential random graphs models. Sociolog Methodol 36(1):99–153
Sun X, Feng E, Li J (2007) From unweighted to weighted networks with local information. Phys A Stat Mech Appl 385(1):370–378
Toivonen R, Kovanen L, Kivel M, Onnela J-P, Saramki J, Kaski K (2009) A comparative study of social network models: network evolution models and nodal attribute models. Soc Netw 31(4):240–254
Virtanen S (2003) Properties of nonuniform random graph models. Research Report A77, Helsinki University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland
Wang L-N, Guo J-L, Yang H-X, Zhou T (2009) Local preferential attachment model for hierarchical networks. Phys A Stat Mech Appl 388(8):1713–1720
Wang J, Rong L (2008) Evolving small-world networks based on the modified ba model. Computer science and information technology, international conference on, pp 143–146
Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge
Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442
Wattsc DJ (2003) Six degrees: the science of a connected age, 1st edn. W. W. Norton & Company, New York
Wen G, Duan Z, Chen G, Geng X (2011) A weighted local-world evolving network model with aging nodes. Phys A Stat Mech Appl 390(21):4012–4026
Wong LH, Pattison P, Robins G (2006) A spatial model for social networks. Phys A Stat Mech Appl 360(1):99–120
Zaidi F (2013) Small world networks and clustered small world networks with random connectivity. Soc Netw Anal Min 3(1):51–63
Zhu H, Wang X, Zhu J-Y (2003) Effect of aging on network structure. Phys Rev E 68(5):056121