Social inequalities and COVID-19 mortality between neighborhoods of Bariloche city, Argentina

Mónica Serena Perner1, Andrés Trotta1, Usama Bilal2,3, Binod Acharya2, Harrison Quick2,3, Natalia Pacífico1, Romina Berazategui4, Marcio Alazraqui1, Ana V. Diez Roux2,3
1Institute of Collective Health, National University of Lanus, Buenos Aires, Argentina
2Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, USA
3Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, USA
4Dr. Ramón Carrillo Hospital, Bariloche, Argentina

Tóm tắt

Abstract Background

The COVID-19 pandemic has shown how intraurban inequalities are likely to reinforce health and social inequalities. Studies at small area level help to visualize social inequialities hidden in large areas as cities or regions.

Aim

To describe the spatial patterning of COVID-19 death rates in neighborhoods of the medium-sized city of Bariloche, Argentina, and to explore its relationship with the socioeconomic characteristics of neighborhoods.

Methods

We conducted an ecological study in Bariloche, Argentina. The outcome was counts of COVID-19 deaths between June 2020 and May 2022 obtained from the surveillance system and georeferenced to neighborhoods. We estimated crude- and age-adjusted death rates by neighborhood using a Bayesian approach through a Poisson regression that accounts for spatial-autocorrelation via Conditional Autoregressive (CAR) structure. We also analyzed associations of age-adjusted death rates with area-level socioeconomic indicators.

Results

Median COVID-19 death rate across neighborhoods was 17.9 (10th/90th percentile of 6.3/35.2) per 10,000 inhabitants. We found lower age-adjusted rates in the city core and western part of the city. The age-adjusted death rate in the most deprived areas was almost double than in the least deprived areas, with an education-related relative index of inequality (RII) of 2.14 (95% CI 1.55 to 2.96).

Conclusion

We found spatial heterogeneity and intraurban variability in age-adjusted COVID-19 death rates, with a clear social gradient, and a higher burden in already deprived areas. This highlights the importance of studying inequalities in health outcomes across small areas to inform placed-based interventions.

Từ khóa


Tài liệu tham khảo

CEPAL. Mortalidad por COVID-19 y las desigualdades por nivel socioeconómico y por territorio. CEPAL. 2021. Available from: https://www.cepal.org/es/enfoques/mortalidad-covid-19-desigualdades-nivel-socioeconomico-territorio. [Cited 2022 Nov 8].

WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int. [Cited 2022 Nov 9].

Bilal U. Has the pandemic exacerbated urban inequality in Latin America? Ciudades Sostenibles. 2022. Available from: https://blogs.iadb.org/ciudades-sostenibles/en/has-the-pandemic-exacerbated-urban-inequality-in-latin-america/. [Cited 2022 Nov 11].

Boza-Kiss B, Pachauri S, Zimm C. Deprivations and Inequities in Cities Viewed Through a Pandemic Lens. Frontiers in Sustainable Cities. 2021;3. Available from: https://www.frontiersin.org/article/10.3389/frsc.2021.645914. [Cited 2022 Jun 7].

United Nations. Policy Brief: COVID-19 in an Urban World - World | ReliefWeb. 2020. Available from: https://reliefweb.int/report/world/policy-brief-covid-19-urban-world. [Cited 2022 Jun 7].

World Bank Group. The World Bank Data. 2022. Urban population (% of total population) - Latin America & Caribbean. Available from: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=XJ. [Cited 2022 Sept 19].

Ise A, Villalba S, Clementi L, Carrizo S. Extra long Argentinian lockdown: revising the energy regime. Global Transitions. 2021;1(3):43–54.

Macchia A, Ferrante D, Battistella G, Mariani J, de Quirós FGB. COVID-19 among the inhabitants of the slums in the city of Buenos Aires: a population-based study. BMJ Open. 2021;11(1):e044592.

Nwosu CO, Kollamparambil U, Oyenubi A. Socio-economic inequalities in ability to work from home during the coronavirus pandemic. Econ Labour Relat Rev. 2022;33(2):290–307.

Chowkwanyun M, Reed AL. Racial health disparities and Covid-19 - caution and context. N Engl J Med. 2020;383(3):201–3.

Bilal U, Tabb LP, Barber S, Diez Roux AV. Spatial inequities in COVID-19 testing, positivity, confirmed cases, and mortality in 3 U.S. Cities : an ecological study. Ann Intern Med. 2021;174(7):936–44.

Glodeanu A, Gullón P, Bilal U. Social inequalities in mobility during and following the COVID-19 associated lockdown of the Madrid metropolitan area in Spain. Health Place. 2021;1(70):102580.

Marí-Dell’Olmo M, Gotsens M, Pasarín MI, Rodríguez-Sanz M, Artazcoz L, Garcia de Olalla P, et al. Socioeconomic inequalities in COVID-19 in a European Urban area: two waves, two patterns. Int J Environ Res Public Health. 2021;18(3):1256.

Bilal U, Jemmott JB, Schnake-Mahl A, Murphy K, Momplaisir F. Racial/ethnic and neighbourhood social vulnerability disparities in COVID-19 testing positivity, hospitalization, and in-hospital mortality in a large hospital system in Pennsylvania: A prospective study of electronic health records. Lancet Regional Health - Americas. 2022;1(10):100220.

Bilal U, Mullachery PH, Schnake-Mahl A, Rollins H, McCulley E, Kolker J, et al. Heterogeneity in Spatial Inequities in COVID-19 Vaccination Across 16 Large US Cities. Am J Epidemiol. 2022;191(9):1546–56.

Wachtler B, Michalski N, Nowossadeck E, Diercke M, Wahrendorf M, Santos-Hövener C, et al. Socioeconomic inequalities and COVID-19 – A review of the current international literature. J Health Monit. 2020;5(Suppl 7):3–17.

Bermudi PMM, Lorenz C, de Aguiar BS, Failla MA, Barrozo LV, Chiaravalloti-Neto F. Spatiotemporal ecological study of COVID-19 mortality in the city of São Paulo, Brazil: Shifting of the high mortality risk from areas with the best to those with the worst socio-economic conditions. Travel Med Infect Dis. 2021;1(39):101945.

Bilal U, Alfaro T, Vives A. COVID-19 and the worsening of health inequities in Santiago, Chile. Int J Epidemiol. 2021. https://doi.org/10.1093/ije/dyab007.

Arceo-Gomez EO, Campos-Vazquez RM, Esquivel G, Alcaraz E, Martinez LA, Lopez NG. The income gradient in COVID-19 mortality and hospitalisation: An observational study with social security administrative records in Mexico. Lancet Regional Health – Americas. 2022;6. Available from: https://www.thelancet.com/journals/lanam/article/PIIS2667-193X(21)00111-3/fulltext. [Cited 2022 Nov 9].

Marconi AM, Castillo Salgado C, Sarrouf EB, Zamora RJ, Irurzun AM, Islam N. Socioeconomic inequities of COVID-19 mortality in vulnerable Comunas of the City of Buenos Aires. Sci Rep. 2023;13(1):13642.

Chauvin JP, Fowler A, Herrera L. N. The Younger Age Profile of COVID-19 Deaths in Developing Countries. Inter-American Development Bank; 2020. Available from: https://publications.iadb.org/en/node/29388. [Cited 2022 Jul 1].

Demombynes G. COVID-19 Age-Mortality Curves Are Flatter in Developing Countries. Washington, DC: World Bank; 2020. Available from: https://openknowledge.worldbank.org/handle/10986/34028. [Cited 2022 Jul 1].

Moraga P. Small area disease risk estimation and visualization using R. R J. 2018;10(1):495–506.

Kong AY, Zhang X. The use of small area estimates in place-based health research. Am J Public Health. 2020;110(6):829–32.

Quick H, Waller LA, Casper M. Multivariate spatiotemporal modeling of age-specific stroke mortality. Ann Appl Stat. 2017;11(4):2165–77.

Quistberg DA, Diez Roux AV, Bilal U, Moore K, Ortigoza A, Rodriguez DA, et al. Building a Data Platform for Cross-Country Urban Health Studies: the SALURBAL Study. J Urban Health. 2019;96(2):311–37.

Perner MS, Alazraqui M. Bariloche: contrastes ocultos en un paraíso alpino. Desigualdades socio-sanitarias en el espacio urbano. Revista Chilena de Salud Pública. 2021;25(2):139–52.

Rearte A, Moisés MS, Rueda DV, Laurora MA, Marucco AF, Pennini VA, et al. Exceso de mortalidad por todas las causas en el contexto de la pandemia del COVID-19 en Argentina, 2020. Revista Argentina de Salud Pública. 2021;13. Available from: https://rasp.msal.gov.ar/index.php/rasp/article/view/672. [Cited 2022 Jun 17].

INDEC. Unidades Geoestadísticas - Cartografía y códigos geográficos del Sistema Estadístico Nacional. 2023. Available from: https://www.indec.gob.ar/indec/web/Institucional-Indec-Codgeo. [Cited 2023 Aug 16].

INDEC, REDATAM. CEPAL/CELADE. Base de datos - REDATAM. 2015. Available from: https://redatam.indec.gob.ar/argbin/RpWebEngine.exe/PortalAction?BASE=CPV2010A. [Cited 2022 May 16].

INDEC RN. Proyecciones y Estimaciones. 2013. Proyecciones y Estimaciones. Available from: https://estadisticaycensos.rionegro.gov.ar/?contID=55285. [Cited 2022 May 16].

López SR, Tumas N, Bilal U, Moore KA, Acharya B, Quick H, et al. Intraurban socioeconomic inequalities in life expectancy: a population-based cross-sectional analysis in the city of Córdoba, Argentina (2015–2018). BMJ Open. 2022;12(9):e061277.

Trotta A, Bilal U, Acharya B, Harrison Q, Moore K, Perner MS, et al. Spatial inequities in life expectancy in small areas of Buenos Aires, Argentina 2015–2017. J Urban Health. 2023;100:577–90.

Ahmad OB, Boschi Pinto C, Lopez A, Murray C, Lozano R, Inoue M. Age Standardization of Rates: A New WHO Standard. 2001;(31). Available from: https://www.researchgate.net/publication/238744905_Ahmad_OB_Boschi-Pinto_C_Lopez_AD_et_al_2000_Age_Standardization_of_Rates_A_New_WHO_Standard_GPE_Discussion_Paper_Series_No_31_World_Health

Feres J, Mancero X. El método de las necesidades básicas insatisfechas (NBI) y sus aplicaciones en América Latina. 2001. p. 7.

INDEC. Necesidades Básicas Insatisfechas (Version ampliada con datos departamentales). DINREP; 2014. Available from: http://www2.mecon.gov.ar/hacienda/dinrep/Informes/archivos/NBIAmpliado.pdf.

Perner MS, Alazraqui M, Amorim LDAF. Social inequalities between neighborhoods and cardiovascular disease: a multilevel analysis in a Latin American city. Cien Saude Colet. 2022. Available from: http://www.cienciaesaudecoletiva.com.br/en/articles/desigualdades-sociais-entre-vizinhancas-e-doencas-cardiovasculares-analise-multinivel-em-uma-cidade-latinoamericana/18262. [Cited 2022 May 5].

Bilal U, Hessel P, Perez-Ferrer C, Michael YL, Alfaro T, Tenorio-Mucha J, et al. Life expectancy and mortality in 363 cities of Latin America. Nat Med. 2021;27(3):463–70.

Blangiardo M, Cameletti M. Spatial and Spatio-temporal Bayesian Models with R-INLA. United Kingdom: Wiley; 2015.

Sturtz S, Ligges U, Gelman A. R2WinBUGS : A Package for Running WinBUGS from R. J Stat Soft. 2005;12(3). Available from: http://www.jstatsoft.org/v12/i03/. [Cited 2022 Nov 16].

Rubin DB. Multiple Imputation for Nonresponse in Surveys | Wiley. 2004. 258 p. Available from: https://www.wiley.com/en-us/Multiple+Imputation+for+Nonresponse+in+Surveys-p-9780471655749. [Cited 2022 Nov 10].

Diez Roux AV, Mair C. Neighborhoods and health. Ann N Y Acad Sci. 2010;1186:125–45.

Waller L, Gotway C. Applied Spatial Statistics for Public Health Data. New Jersey: John Wiley & Sons, Ltd; 2004.

Aquino R, Gouveia N, Texeira MG, Costa M da C, Barreto ML. Estudos Ecológicos Desenho de Dados Agregados. In: Epidemiologia Saúde Fundamentos Metódos Aplicações. Rio de Janeiro: Guanabara Koogan; 2012. p. 175–85.

Marmot M, Allen J, Goldblatt P, Herd JME. Build Back Fairer: The COVID-19 Marmot Review. The Pandemic, Socioeconomic and Health Inequalities in England. Insitutte of Health Equity; 2020. Available from: https://www.health.org.uk/publications/build-back-fairer-the-covid-19-marmot-review. [Cited 2022 Jun 9].

Diez Roux AV. Social epidemiology: past, present, and future. Annu Rev Public Health. 2022;43:79–98.

Tumas N, Rodríguez López S, Bilal U, Ortigoza AF, Diez Roux AV. Urban social determinants of non-communicable diseases risk factors in Argentina. Health Place. 2021;29:102611.

Bilal U, Alazraqui M, Caiaffa WT, Lopez-Olmedo N, Martinez-Folgar K, Miranda JJ, et al. Inequalities in life expectancy in six large Latin American cities from the SALURBAL study: an ecological analysis. Lancet Planetary Health. 2019;3(12):e503–10.

Fox MP, Murray EJ, Lesko CR, Sealy-Jefferson S. On the need to revitalize descriptive epidemiology. Am J Epidemiol. 2022;191(7):1174–9.

Diez Roux AV. Population Health in the Time of COVID-19: Confirmations and Revelations. Milbank Q. 2020;98(3):629–40.

Mi J, Zhong W, Huang C, Zhang W, Tan L, Ding L. Gender, age and comorbidities as the main prognostic factors in patients with COVID-19 pneumonia. Am J Transl Res. 2020;12(10):6537–48.

Doerre A, Doblhammer G. The influence of gender on COVID-19 infections and mortality in Germany: Insights from age- and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic. PLoS ONE. 2022;17(5):e0268119.